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Spin dynamics simulations of classical ferro- and
antiferromagnetic model systems: comparison with theory
and experiment
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‡ Institut für Theoretische Physik, RWTH Aachen, 52056 Aachen, Germany

Received 24 August 1998

Abstract. In this article we review the progress which has been made in spin dynamics simulations
of simple models of magnetic systems. We will describe modern spin dynamics methods and show
results which have been obtained for a number of simple model systems. Where appropriate we
will make comparison with experimental results and theoretical predictions.

1. Introduction

Although the static properties of a large number of physical systems have been well
studied experimentally and many simple models have been examined by both theoretical and
simulational means, the study of the dynamic properties of magnetic systems is far less mature.
Arguably the most well developed simulational approach to these systems is the Monte Carlo
method in its various versions. Unfortunately these techniques are fundamentally stochastic in
nature and there is no correlation between the development of a system inMonte Carlo timeand
in real time, although the static averages turn out to be the same. An alternative approach to the
investigation of time dependent properties is to generate initial states, drawn from a canonical
ensemble using Monte Carlo methods, and to use these as starting points for the integration
of the coupled equations of motion. This method has been around for some three decades,
but it is only in recent years that efficient algorithms have been developed and computers have
become sufficiently fast that it has become possible to garner substantial information about
dynamic properties in ‘interesting’ regimes, e.g., near phase transitions.

The purpose of this article is to provide background on the spin dynamics method and to
describe the current status of results. An important issue which will also be considered is the
comparison between spin dynamics results and those of experiment on real, physical systems
as well as with theory. For simplicity, we shall restrict ourselves to systems ofN fixed length,
three-component, classical spins which interact with the general Hamiltonian

H = −J
∑
〈i,j〉
(SixSjx + SiySjy + λSizSjz) +D

∑
i

S2
iz +H

∑
i

Siz (1.1)

where the first sum is over all nearest neighbour pairs,λ represents exchange anisotropy,D

is the single ion anisotropy andH is the external magnetic field. There are a number of
physical systems which are well approximated by (1.1), although for different systems, and
different experimental conditions one or more of the parameters may vanish. Forλ = 1 and
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D = 0 (1.1) represents the classical, isotropic Heisenberg ferromagnet or the corresponding
antiferromagnet forJ > 0 or J < 0, respectively. Research in the general area of critical
dynamics is now quite widespread and in the space available here it is simply not possible
to review all relevant material. We, therefore, emphasize at the outset that we have made a
subjective choice of the topics to be reviewed here and apologize in advance to those authors
whose work is not cited here.

2. Theoretical background

2.1. Critical dynamics in magnets

The dynamic properties of magnetic systems have been of great theoretical interest for over
30 years. The behaviour of propagating modes, such as spin waves, at low temperatures and
spin diffusion at high temperatures has been studied extensively. One particularly intriguing
aspect of the time dependent behaviour of magnetic systems is the ‘critical slowing down’ which
occurs as a second-order phase transition is approached. In a classic exposition, Hohenberg
and Halperin (1977) described the framework for understanding dynamic critical behaviour in
terms of universality classes which depended on a small number of properties of the models
such as lattice dimensionalityd and symmetry of the Hamiltonian. A new dynamic critical
exponentz was introduced to describe the divergence of the characteristic times scale as the
critical point is approached. Explicit predictions were made for simple models such as the
isotropic Heisenberg ferromagnet and antiferromagnet ind = 3. In the following discussion
we confine ourselves to systems with short range interactions; the modifications which are
necessary when dipolar couplings are present have been reviewed by Frey and Schwabl (1994)
and will be treated only briefly here.

At the critical pointTc of an infinite system, the correlation timeτ grows asτ ∼ |q|−z as
the wave vectorq of the mode approaches zero. Associated with the time scaleτ there is a
characteristic frequencyω which has the scaling form

ω = |q|z�(|q||T − Tc|−ν) (2.1)

whereν is the critical exponent of the correlation length. If the system is confined to a finite
boxLd the relaxation time of theq = 0 mode grows asτ ∼ Lz atT = Tc, a behaviour which
can be justified within the framework of dynamic finite-size scaling described in section 5.

The analytical theory of critical dynamics in classical Heisenberg ferro- and
antiferromagnets ind > 2 is based on the Ginzburg–Landau Hamiltonian

HGL =
∫

ddx

[
1

2
|∇8|2 +

r

2
|8|2 + u|8|4

]
(2.2)

for a three-component order parameter8, wherer ∝ (T −Tc)/Tc is a measure of the reduced
temperature andu is the coupling constant. The static critical behaviour of Heisenberg ferro-
and antiferromagnets in 2< d 6 4 is captured by (2.2). Within this coarse grained picture
the dynamics of an isotropic ferromagnet, which has been classified as model J by Hohenberg
and Halperin (1977), can be written in the form of the Langevin equation

∂8

∂t
= λ0∇2 δH

δ8
+ g08× ∂H

∂8
+2

H = HGL −
∫

dd8 · h(x, t)
(2.3)

where the magnetization (order parameter)8 is conserved and2 = (θ1, θ2, θ3) denotes a
Gaussian distributed white noise source with zero mean and correlations according to

〈θα(x, t)θβ(x ′, t ′)〉 = −2λ0∇2δ(x − x ′)δ(t − t ′)δα,β . (2.4)
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λ0 andg0 are Onsager coefficients. Note that (2.4) ensures the validity of the dissipation–
fluctuation theorem. The dynamic exponentz for model J is given by

z = 1

2
(d + 2− η) = d − β

ν
. (2.5)

A simple argument which leads to (2.5) can be obtained from the behaviour of (2.3) for
T > Tc: the only remaining characteristic frequency, the Larmor frequency, is proportional to
a magnetic field and thus has the same scaling dimension (Wagner 1970, Bauschet al 1976).

For an isotropic antiferromagnet the dynamics is quite different although the static critical
behaviour is still described by (2.2). In contrast to the ferromagnetic case, the order parameter
8 (staggered magnetization) is no longer conserved. Furthermore, the time evolution of the
order parameter is coupled to the usual magnetizationm whose magnitude is aconserved
quantity that does not affect the static critical behaviour. The Langevin equations for the
isotropic antiferromagnet are classified as model G (Hohenberg and Halperin 1977):

∂8

∂t
= −00

δH
δ8

+ g08× δH
δm

+2

∂m

∂t
= λ0∇2 δH

δm
+ g08× δH

δ8
+ g0m× δH

δm
+4 (2.6)

H = HGL +
∫

ddx
|m|2
2χm
−
∫

ddx(8 · h(x, t) +m · hm(x, t)).

The noise sources2 = (θ1, θ2, θ3) and4 = (ζ1, ζ2, ζ3) are again Gaussian with zero mean,
but

〈θα(x, t)θβ(x′, t ′)〉 = 200δ(x− x′)δ(t − t ′)δα,β (2.7)

where the correlations of4 are given by (2.4). Note that the order parameter8 and the
magnetization are not coupled by the HamiltonianH. In contrast to the ferromagnet the spin
wave spectrum for the antiferromagnet islinear in q for small|q|

ω(q) = cs |q| with c2
s = ρs/χm (2.8)

wherecs is the spin wave velocity. The susceptibilityχm is always finite, whereas the stiffness
constant (helicity modulus)ρs exhibits a critical singularity at the Ńeel temperatureTN , i.e.
ρs ∼ (TN − T )ν(d−2) for T 6 TN . In order to reconcile (2.8) with the general scaling form
given by (2.1) forTc = TN one has to set�(x) ∼ x1−z for x � 1, i.e. forT < TN andq→ 0.
From the temperature singularity ofcs one obtains

z = d/2. (2.9)

Another interesting case is provided byanisotropicHeisenberg ferromagnets (see (1.1)
for λ 6= 1). In contrast to the dynamics in an isotropic ferromagnet only thez component of
the magnetization is still conserved. Forλ = 0 (1.1) describes a planar ferromagnet, which
has the same static critical behaviour as anXY model. According to the modified conservation
laws the dynamics of the planar ferromagnet represents a universality class distinct from the
ones mentioned above and has been classified as model E (Hohenberg and Halperin 1977). In
terms of a complex order parameter8 ≡ mx + imy and the conservedz componentm ≡ mz
of the magnetization the Langevin equations read

∂8

∂t
= −00

δH
δ8∗ − ig08

δH
δm

+2

∂m

∂t
= λ0∇2 δH

δm
+ 2g0Im

(
8 ∗ δH

δ8∗
)

+ ζ (2.10)

H = HGL +
∫

ddx
m2

2C0
−
∫

ddx(Re(8 ∗ h(x, t)) +mhm(x, t))
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where2 = θx + iθy and ζ are noise sources according to (2.7) and (2.4), respectively.
If (2.10) is rewritten in components (mx,my,mz) of the magnetization, one immediately
recovers the components of the usual Larmor term for the planar ferromagnet. By inspection
of equation (2.10) one obtains the impression that the dynamics of a planar ferromagnet is
closer to the dynamics of the isotropicantiferromagnet(model G) than to the dynamics of the
isotropic ferromagnet (model J). This is indeed the case even in a quantitative sense, because
the dynamic exponentz is found to be the same as for model G (see (2.9)) by virtue of the
same arguments (Hohenberg and Halperin 1977).

2.2. Mode coupling theory of spin dynamics

Another theoretical approach to the dynamics of magnetic systems which is also based on a
coarse grained picture of magnets is provided by mode-coupling theory (see Kawasaki (1976)
for an extended review of this technique). As a starting point one considers the Heisenberg
equations of motion for the spin operatorsSαq (t) in momentum space. For, e.g., an isotropic
Heisenberg model forλ = 1 andD = 0, one obtains ind = 3 (h̄ = 1)

d

dt
Szq = −i

∫
d3k

(2π)3
(J (k)− J (q − k))S+

q−kS
−
k

d

dt
S±q = ±2i

∫
d3k

(2π)3
(J (k)− J (q − k))S±q−kSzk

(2.11)

whereS±q = Sxq ± iSyq are the ladder spin operators andJ (q) = −J0 + J1q
2 + · · · is the

Fourier transform of the exchange coupling expanded for small momentaq. From (2.11) one
obtains the mode coupling equations for correlation functions on a coarse grained timescale by
a projection on slow variables like the order parameter or the energy density. For the systems
discussed here the quantities of main interest are the Kubo relaxation functions which are
defined by (Thomaet al 1991)

φα,β(q, t) = i lim
ε→0

∫ ∞
t

dτe−ετ 〈[Xαq (τ ),Xβq (0)+]〉 (2.12)

whereXαq (t) ≡ Sαq (t)/
√
χα(q) are normalized spin variables and theχα(q) are the static

spin–spin correlation functions. The equation of motion forφα,β then reads

∂

∂t
φα,β(q, t) = iωα,γ (q)φγ,β(q, t)−

∫ t

0
dτ0αγ (q, t − τ)φγ,β(q, τ ) (2.13)

whereωα,β(q) = −〈[Xαq (0), Xβ−q(0)]〉 is the frequency matrix which contains alllinear
contributions to spin dynamics and relaxation. The nonlinearities are captured by the memory
kernel0α,β(q, t)which depends on higher correlation functions between the spin variables. If,
e.g., only two-mode processes are retained,0α,β(q, t) becomes bilinear inφα,β(q, t). With this
approximation mode coupling theory for the isotropic ferromagnet is consistent with dynamic
scaling in the critical regime, wherez = (5 + η)/2 is obtained ind = 3, a result which is
at variance with (2.5). In order to reproduce (2.5) higher order and vertex corrections must
be taken into account (Frey and Schwabl 1994). For the isotropic antiferromagnet (Kawasaki
1976) and the planar ferromagnet (Thomaet al 1991) dynamic scaling is obtained with the
correct valuez = 3/2 of the dynamic exponent within the two-mode approximation for the
memory kernel ind = 3. If (2.13) is Fourier transformed into frequency space, a set of
self-consistent integral equations forφα,β(q, ω) is obtained. For many practical purposes the
frequency dependence of0α,β(q, ω) is weak so that these functions can be replaced by their
value atω = 0. In this case the Kubo relaxation functions (line shapes) become Lorentzian in
ω (Thomaet al 1991, Frey and Schwabl 1994).
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Mode coupling theory has also been applied ind = 3 to ferromagnets with dipolar
interactions (Frey and Schwabl 1994), which due to their long ranged nature are expected to
dominate the critical behaviour. Furthermore, dipolar forces are anisotropic and therefore the
magnetization in ferromagnets is no longer a conserved quantity. If exchange interactions are
also present, a new length scale 1/qD emerges which keeps the longitudinal component of
the static susceptibility finite atTc, whereas the transverse component diverges. Accordingly,
dynamic scaling differs for longitudinal and transverse modes and the scaling functions depend
on the dimensionless ratio|q|/qD. For longitudinal modes,z‖ = 0 in the dipolar regime,
i.e., the characteristic frequency remainsfinite at T = Tc for q → 0. For transverse modes,
z⊥ = 2, which is the classical value for purely relaxational dynamics without conservation laws
(model A of Hohenberg and Halperin (1977)). Within the same approximations one obtains
z = 5/2 for the usual short-ranged exchange interactions. Note thatz = 5/2 is consistent
with (2.5) ind = 3 within the Ornstein–Zernicke approximation (η = 0). The crossover from
isotropic (z = 5/2) to dipolar (z‖ = 0 andz⊥ = 2) critical behaviour, is entirely captured by the
scaling functions of the characteristic frequencies and can be described within the Lorentzian
approximation for the Kubo relaxation functions.

2.3. Magnetic chains in external fields: solitons

There is a wide body of literature on the theory of magnetic systems ind = 1 spatial dimensions.
We will therefore only focus on a particularly interesting set of questions which arises when one
looks at ferromagnetic Heisenberg chains with a planar anisotropy in a symmetry breaking field.
An effective continuum model for this problem turns out to be given by the classical sine–
Gordon model (Mikeska 1978, Allroth and Mikeska 1981a, b). The elementary excitations
consist of plane (spin) waves and solitons which in their simplest form may be visualized as
localized±2π twists of spins along the chain. In the different components of the dynamic
structure factor these excitations appear as central soliton peaks. A single spin-wave peak in
SSWy (q, ω) is predicted to be a simpleδ function

SSWy (q, ω) = kBT

4π(m2 + q2)
δ(ω − ωq) (2.14)

wherem is the soliton rest mass. With spin-wave interactionsSy(q, ω) becomes Lorentzian,

δ(ω − ωq)→ 1

π

0

(ω − ωq)2 + 02
. (2.15)

The central soliton peak has a Gaussian line shape

Ssolα (q, ω) =
[
1− kBT

2m

[
1− m

2 + q2

12m2

]]
32

cqπm2

[
m

πkBT

]1/2

n exp

[
4mω2

kBT c2q2

]
fα(q) (2.16)

wheren is the soliton density, which increases as exp(−8m/kBT ), andfx(q) andfy(q) differ.
There should be no single spin-wave peak inSxx(q, ω) but rather a two-spin-wave signal with
step-like and square-root singularities. In the sine–Gordon description the spins are confined
to thexy plane so that no predictions are made aboutSzz(q, ω). The general picture given by
the sine–Gordon theory has been confirmed by spin dynamics simulations of anXY chain in
a magnetic field (Gerling and Landau 1990), but the quantitative agreement with the theory
remains unsatisfactory.

2.4. Two-dimensional easy plane magnets and theXY model

The d = 2 XY ferromagnet (anisotropic Heisenberg model) is one of the ‘special’ models
of magnetism. It undergoes an unusual phase transition to a state with bound, topological
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excitations (vortex pairs) but no long range order (Kosterlitz and Thouless 1973). The (three-
component)XY model may be viewed as a special case of the anisotropic Heisenberg model in
which the coupling between thez components of spins vanishes ((1.1) withλ = 0,D = 0). It
has static properties which are similar to those of the ‘plane rotator’ model, in which the spins
have only two components. The static behaviour of both models has been studied by simulation
(see, e.g., Tobochnik and Chester 1979, Gerling and Landau 1984, Gupta and Baillie 1992,
Janke and Nather 1993) and found to be consistent with the predictions of the Kosterlitz–
Thouless theory. For example, the susceptibility shows an essential singularity instead of a
power law divergence, and vortex pairs unbind atTKT .

TheXY model has true dynamics which can be determined by integrating the equations
of motion for each spin whereas the ‘plane rotator’ model has only stochastic, i.e. relaxational,
time dependence which has been examined by Monte Carlo simulation (Gupta and Baillie
1992). Note thatdifferentdynamic exponents are expected for stochastic and for true dynamics
(Hohenberg and Halperin 1977).mz is conserved during the time evolution; so that the out-
of-plane componentSzz and in-plane componentSxx = Syy can be separated. The dynamics
of d = 2 systems with easy-plane asymmetry were first analysed by Villain (1974, 1975) and
by Moussa and Villain (1976).Sxx(q, ω) was found to have aδ function spin-wave peak at
low temperature and nearTKT a spin-wave peak of the form

Sxx(q, ω) ∼ 1

|ω − ωq |1−η/2 . (2.17)

Hereωq is the position of the spin-wave peak andη is the exponent describing the decay of
the static spin–spin correlation function (η = 1/4 atTKT ). At high temperatures, Moussa and
Villain (1976) predict thatSxx(q, ω) is given by the sum of two non-divergent terms.

In spatial dimensionsd 6 2 the description of the static behaviour of Heisenberg-like
systems is no longer captured by the Ginzburg–Landau Hamiltonian given by (2.2). Instead,
one can use an adapted version of the well known nonlinear sigma model, which in the case
of a planar ferromagnet has been considered in the form (Nelson and Fisher 1977)

H = 1

2

∫
ddx[(∇mx)2 + (∇my)2 +m2

z ] (2.18)

with the constraintm2
x +m2

y = 1, neglecting coupling betweenmz and the other components
ofm. They obtained the transverse spin–spin correlation function,

Cxx(r, t) ∼ 1/rη 9η(ct/r) (2.19)

9η(y) =
{

1 y < 1

(y +
√
y2 − 1)−η y > 1

wherec is the spin-wave velocity andt is the time. The Fourier transform of (2.19) is

Sxx(q, ω) ∼ 1

q3−η 9
(
ω

cq

)
(2.20)

where the scaling functionψ behaves like

9(y) ∼ 1

|1− y2|1−η (2.21)

around the spin-wave peak, and

Sxx(q, ω) ∼ ωη−3 ω � ωq. (2.22)

They also predicted that the dynamic critical exponent, which should bez = d/2 for d > 2
(Hohenberg and Halperin 1977), isz = 1 for d 6 2. Note that the valuez = 1 and a
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linear dispersion relation are also implicit in the argument of the scaling function9 in (2.20).
Finally, both theories predict aδ function spin-wave peak inSzz(q, ω), at ω = cq. More
recently, Menezeset al (1993) performed a low temperature calculation which includes the
out-of-plane fluctuations and found a similar spin-wave peak as Nelson and Fisher,

Sxx(q, ω) ∼ η2 1

q3|ω̂||1− ω̂2| (2.23)

plus a logarithmically divergent central peak

Sxx(q, ω) ∼ η2 log(1/ω̂)

q
(2.24)

whereω̂ = ω/(cq). Of course, a central peak at low temperature can also be caused by other
mechanisms, e.g. vortex pairs diffusing like a dilute pair of solitons (Pereiraet al 1992). Very
narrow peaks are predicted forSzz(q, ω) (Menezeset al 1992).

For a phase transition of Kosterlitz–Thouless type, the spin stiffness should drop
discontinuously to zero atTKT , i.e. the spin-wave peak is predicted to disappear (Nelson and
Fisher 1977, Nelson and Kosterlitz 1977). AboveTKT , vortex–antivortex pairs unbind, and
their diffusion leads to a strong central peak inS(q, ω). Mertenset al (1987, 1988) calculated
S(q, ω) aboveTKT , assuming an ideal dilute gas of unbound vortices moving in the presence
of renormalized spin waves and screened by the remaining vortex–antivortex pairs. They find
a Lorentzian central peak forSxx(q, ω),

Sxx(q, ω) ∼ γ 3ξ2

[ω2 + γ 2[1 + (ξq)2]] 2
(2.25)

and a Gaussian central peak forSzz(q, ω),

Szz(q, ω) ∼ nvū

q3
exp

{
−
(
ω

ūq

)2}
(2.26)

whereγ = (√π/2)ū/ξ , ū is the rms vortex velocity andnv ∼ (2ξ)−2 the free vortex density.
Early analytical work on vortex dynamics in 2D Heisenberg ferromagnets with a planar

anisotropy (see (1.1) with 0< λ < 1 andD = 0) focused on vortex motion in a diluted vortex
gas forT > TKT (Huber 1978). The vortex contribution to the in-plane spin autocorrelation
function shows a vanishing decay rate atT → TKT due to the disappearance of free vortices.
However, the faster decay of multiple spin-wave contribution obscures the critical slowing
down. In the out-of-plane component, vortices lead to a narrow central peak on top of a
broad spin-wave background. The quantitative picture of the critical dynamics is expected
to hold for allq values outside the hydrodynamic regime. More recently, additional vortex
dynamics calculations have been performed for easy-plane Heisenberg ferromagnets (Mertens
et al 1988, 1989, Gouv̂eaet al 1989) and their antiferromagnetic counterparts (Völkel et al
1991a, b). AboveTKT , Sxx(q, ω) is given by a squared Lorentzian, whereasSzz(q, ω) displays
a Gaussian shape where the line widths depend on the root-mean-square vortex velocity. Note
that for both ferro- and antiferromagnets planar vortices should only be stable for valuesλ < λc;
aboveλc the vortices develop an out-of-plane component with a bell-shape distribution centred
at the vortex core.

3. Experimental background

Experimental investigation of dynamics in magnetic systems can be effectively studied using
inelastic neutron scattering techniques. These experiments measure the dynamic structure
factor,S(q, ω), the properties of which yield information about elementary excitations and
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dynamic critical behaviour. These experiments are more difficult than elastic scattering studies
because of the greatly reduced signal to noise ratio. Typically critical properties are examined
by measuring various intensities and lineshapes as a function of the reduced distance from
the critical pointTc. In the case of dynamic critical behaviour this means measuring the
q dependence of the dynamic response atTc for q → 0. This means, of course, that the
critical temperature must be accurately known and the dynamic structure factor for small
q and the resolution function must be accurately determined. Another difficulty which is
faced in carrying out experimental studies is that of finding physical systems which can be
well approximated by the simple magnetic models discussed above. Fortunately, there are
several well studied systems which can be described by simple Hamiltonians of the kind in
equation (1.1). Examples include CsNiF3 as a prototype of a 1D soliton bearing system, CoCl2-
GIC as an example of a 2DXY system, and EuS and RbMnF3 as examples of an isotropic 3D
Heisenberg ferromagnet and antiferromagnet respectively. Lastly, anisotropic 3D systems are
well represented by MnF2 and FeF2. Some of these experimental results will be described later.

4. Spin dynamics methods

4.1. Equations of motion

For models with continuous degrees of freedom, real equations of motion,

dSi
dt
= ∂H
∂Si
× Si = −Si ×Heff (4.1)

describe the dynamics whereHeff is an ‘effective’ interaction field. For the isotropic
Heisenberg ferromagnetHeff = −J

∑
nn Sj and the time dependence of each spin,Sr (t),

can be determined from integration of these equations (Gerling and Landau 1984). These
coupled equations of motion can be viewed as describing the precession of each spin about an
effective interaction field; the complexity arises from the fact that, since all spins are moving,
the effective field is not static but rather itself constantly changing direction and magnitude.

4.2. Time integration algorithms

A number of algorithms are available for the integrations of the coupled equations of motion
which were derived in the previous sub-section. The simplest approach is to simply expand
about the current spin value using the time-step1 as the expansion variable;

Sαi (t +1) = Sαi (t) +1Sαi (t) +
1

2
12S̈αi (t) +

1

3!
13 ...

S
α

i (t) + · · · (4.2)

where theα denotes the spin component. The ‘new’ estimate may be made by simply evaluating
as many terms as possible in the sum, although this procedure must obviously be truncated at
some point. Of course, values of the various time derivatives must be obtained and, except
for Ṡαi which can be obtained directly from (1.1), these calculations may be somewhat time
consuming. Typical values of1 which deliver reliable results to a reasonable maximum
integration timetmax are in the range of1 = 0.005. If the equation is truncated at the point
shown in (4.3), the errors will be of order14. A very simple improvement can be made by
implementing a ‘leapfrog’ procedure in which one also expands using−1 as the expansion
variable and subtracts the resulting equation from (4.2) to yield

Sαi (t +1) = Sαi (t −1) + 21Ṡαi (t) +
2

3!
13 ...

S
α

i (t) + · · · . (4.3)
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The error in this integration isO(15) and allows not only larger values of1 to be used
but also allows us to extend the maximum integration time totmax ≈ 100J−1. Several
standard numerical methods can also be applied. One excellent approach is to use a predictor–
corrector method; fourth-order predictor–corrector methods have proven to be quite effective.
An example is the explicit four-step Adams–Bashforth method (Burdenet al 1981)

Sαi (t +1) = Sαi (t) + 1
241[55Sαi (t)− 59Sαi (t −1) + 37Sαi (t − 21)− 9Sαi (t − 31)] (4.4)

followed by an implicit Adams–Moulton corrector step

Sαi (t +1) = Sαi (t) + 1
241[9Sαi (t +1) + 19Sαi (t)− 5Sαi (t −1) + Sαi (t − 21)] (4.5)

a combination which also has a local truncation error of15 and which has proven to be quite
successful. The first application of (4.4) obviously requires that at least three time steps have
already been taken; these can initially be provided using the fourth-order Runge–Kutta method,
starting with the initial state. Of course, this predictor–corrector method requires that the spin
configuration at four time steps must be kept in memory. Note that the conservation laws
discussed earlier will only be observed within the accuracy set by the truncation error of the
method. In practice, this limits the time step to typically1 = 0.01/J in d = 3 (Chen and
Landau 1994) for the isotropic model (D = 0), wheretmax 6 200/J . The same method was
used ind = 2; with a time step1 = 0.025/J (Costaet al 1997),tmax 6 60/J , whereas with
1 = 0.01/J , tmax = 400/J (Evertz and Landau 1996) could be achieved.

For a typical spin dynamics study the major part of the CPU time needed is consumed by
the numerical time integration. The biggest possible time step is thus most desirable; however,
‘standard’ methods impose a severe restriction on the size of1 for which the conservation
laws of the dynamics are obeyed. It is evident from (4.1) that|Si | for each lattice sitei and the
total energy are conserved. Symmetries of the Hamiltonian impose additional conservation
laws, so, e.g. forD = 0 andλ = 1 (isotropic Heisenberg model) the magnetizationm is
conserved. For an anisotropic Heisenberg model, i.e.,λ 6= 1 orD 6= 0, only thez component
mz of the magnetization is conserved. Conservation of spin length and energy is particularly
crucial, and it would therefore also be desirable to devise an algorithm which conserves these
two quantities exactly. Thus, a new, large time step integration procedure, which is based
on Trotter–Suzuki decompositions of exponential operators and conserves both spin length
and energyexactlyfor D = 0, has been devised. The motion of a spin, given by (4.1), may
be visualized as a precession of the spinSi around an effective fieldHeff which is itself
time dependent. For the simple caseD = 0, and arbitrary values ofλ, the lattice can be
decomposed into two sublattices such that a spin on one sublattice performs a precession in a
local fieldHeff of neighbour spins which areall located on the other sublattice. First, each
spin on a sublattice is rotated about its local fieldHeff by an angleα = |Heff |1, guaranteeing
conservation of the spin length to within machine accuracy, and the process is then carried out
for spins on the other sublattice. The sublattice equations of motion reduce to a linear system
of differential equations if the spins on the other sublattice are kept fixed, so an alternating
update scheme is used. Note, that each sublattice rotation is performed with the current values
of the spins on the other sublattice, so that only a single copy of the spin configuration is
kept in memory at any time. However, the magnetization will not be conserved during the
above rotation operations; moreover, the two alternating rotation operations do not commute,
so that a closer examination of the sublattice decomposition of the spin rotation is required.
The cross products in the equations of motion can expressed by matricesA andB which are
the generators of the rotation of the spin configurationSiA on sublatticeA at fixedSiB and
of the spin configurationSiB on sublatticeB at fixedSiA, respectively. The update of the
configuration can then be expressed by an exponential (matrix) operator by

Si (t +1) = e(A+B)1Si (t). (4.6)
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Although the exponential operator has no simple explicit form, because the rotation axis for
each spin depends on the configuration itself and is therefore not knowna priori, the operators
eA1 and eB1 do have a simple explicit form. The alternating update amounts to the replacement
of e(A+B)1 by eA1 eB1 which is only correct up to terms of the order12 (Suzuki and Umeno
1993). The magnetization will thus only be conserved up to terms of the order1, but further
improvement is possible by employing higher order Suzuki–Trotter decompositions of the
exponential to decrease the local truncation error, e.g. to second order:

e(A+B)1 = eA1/2 eB1 eA1/2 +O(13) (4.7)

which is equivalent to the midpoint integration method applied to (4.6) and to fourth order:

e(A+B)1 =
5∏
i=1

epiA1/2epiB1epiA1/2 +O(15) (4.8)

with the parametersp1 = p2 = p4 = p5 ≡ p = 1/(4−41/3), andp3 = 1−4p. The additional
computational effort invested in the evaluation of (4.8) can be compensated by using larger
time steps. (Note that the above decompositions maintain time reversal symmetry.) More
distant neighbour two-spin interactions can be included if the lattice is decomposed into more
sublattices, and the method can be generalized to the caseD 6= 0 (Krechet al 1998).

A quantitative comparison of these integration methods was made for the simple cubic
Heisenberg model withλ = 1 andL = 10. The same initial configurations were chosen by
Monte Carlo simulation atT = 0.8Tc, whereTc is the critical temperature of the isotropic
model (D = 0). The equations of motion were integrated totmax = 800/J with 1 = 0.01/J
for the predictor–corrector method in all cases. ForD = 0 the energy per spine(t) for the
predictor–corrector method increases linearly with time whereas the decomposition methods
both yielde(t) = const. The predictor–corrector method conservesm(t) exactly, whereas
the second-order decomposition with1 = 0.04/J has fluctuations ofm(t) on all time scales,
includingt > tmax ; the fourth-order decomposition method with1 = 0.2/J gives remarkably
good magnetization conservation despite the large time step. In order to achieve the same
overall accuracy of the magnetization conservation with the second-order decomposition a
time step1 < 0.02/J is necessary. Both decomposition methods yield almost a net tenfold
speedup over the predictor–corrector method.

For the strongly anisotropic case withD = J , the decomposition scheme must be modified
because the spin rotation axis depends on the spin value at the future time (t+1) and an iterative
solution is required. Even so, a 30% gain in speed remains. All three methods show a linear
change in energy with time; a direct comparison of all three methods is displayed in figure 1.
The overall accuracy of the magnetization conservation appears to be independent ofD for
both decomposition methods. Considering both speed and overall energy conservation, the
second-order decomposition has some advantages over the predictor–corrector method; if the
emphasis is on energy conservation alone, the fourth-order method is best but only slightly
faster. A direct comparison ofS(q, ω) for the isotropic Heisenberg ferromagnet showed very
good agreement between the results for the predictor–corrector method with1 = 0.01/J and
for the second-order decomposition method with1 = 0.04/J .

The great advantage of the predictor–corrector method is its versatility and its ability to
conserve the magnetization exactly. Isotropic and anisotropic spin systems can be treated
within the same numerical approach. The division of the lattice into sublattices, which is
the basis for the decomposition method, depends on the range of the interactions, so that
this approach is less general. Single-ion anisotropies leave the performance of the predictor–
corrector method almost unaffected, whereas the decomposition method suffers from a drastic
reduction in speed. The greatest advantage of the decomposition method is its capability
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(a)

(b)

Figure 1. Spin dynamics data for theL = 10 simple cubic Heisenberg model withD = J . For the
predictor–corrector method1 = 0.01/J , for the second-order decomposition method1 = 0.04/J
and for the fourth-order decomposition method1 = 0.2/J . (a) time dependence of the internal
energy; (b) time dependence of thez component of the magnetization. (From Krechet al 1998).

for handling large time steps and the exact conservation of spin length. In the absence of
anisotropies it also conserves the energy exactly and maintains reversibility. For anisotropic
Hamiltonians, energy conservation and reversibility can be obtained to a high accuracy using
iterative schemes; but exact magnetization conservation is lost (figure 1).

4.3. Time-displaced correlation functions and Fourier transforms

The space-displaced, time-displaced spin correlation function and its space–time Fourier
transform are fundamental in the study of critical spin dynamics (Lovesey 1984). The
correlation function is defined, withk = x, y or z, as

Ck(r − r′, t) = 〈Skr (t)Skr ′(0)t〉 − 〈Skr (t)〉〈Skr ′(0)〉 (4.9)



R190 D P Landau and M Krech

where〈. . .〉 denotes the ensemble average and the second term on the right-hand side should
be constant, independent of position and time. The dynamic structure factor is given by

Sk(q, ω) = 1

2π

∑
r,r′

eiq·(r−r′)
∫ ∞
−∞

eiωtCk(r − r′, t)dt (4.10)

Sk(q, ω) is an experimental observable, for momentum transferq and frequencyω, in neutron
scattering experiments. In practice, however, the time integration can only be carried out to
some finite time cutoff which can introduce many oscillations into the result of the Fourier
transform, (4.10). These oscillations, however, can be smoothed out by convoluting the spin
correlation function with a resolution function in frequency (Gerling and Landau 1984) which
plays the same role as does finite collimation in an experiment, i.e.,

S̄k(q̄, ω) = 1

2π

∑
r,r′

eiq̄·(r̄−r̄′)
∫ tcutoff

−tcutoff
eiωtCκ(r̄ − r̄′, t)e−

1
2 (tδω)

2
dt (4.11)

whereδω is a parameter determining the resolution in frequency and needs to be chosen properly
such that effects of the cutoff in the evolution time can be neglected.

4.4. Methods of analysis

4.4.1. Dynamic scaling. The dynamic structure factor depends on the correlation lengthξ

and may be written

Sk(q, ω) = (2π/ωm)Sk(q)f (ω/ωm, q, ξ) (4.12)

whereωm(q, ξ) is a ‘characteristic frequency’,Sk(q) = 1
2π

∫∞
−∞ S

k(q̄, ω)dω andf is a shape
function satisfying the normalization condition (Halperin and Hohenberg 1967, Ferrellet al
1967). The characteristic frequencyωm is a median frequency determined by the constraint∫ ωm

−ωm
S(q̄, ω)dω = 1

2

∫ ∞
−∞

S(q̄, ω)dω. (4.13)

Dynamic scaling theory assumes thatωm(q, ξ) is a homogeneous function ofq andξ , i.e.

ωm = qz �(qξ) (4.14)

wherez is the dynamic critical exponent. ThereforeSkξ (q, ω) simplifies to

Sk(q, ω) = (2π/ωm)Sk(q)f (ω/ωm, qξ) (4.15)

where the functionf depends only on the product ofqξ but not onq andξ separately.

4.4.2. Dynamic finite size scaling.Two major practical limitations on the computer
simulation of dynamic behaviour are finite evolution time and finite system size. The range
of q for which data can be taken is limited, because of finiteL, to values typically larger than
those which is accessible to experiment. The method of analysis used in experiment is thus
not effective here; instead the finite-size effect can be used directly to extract the dynamic
critical exponent as has been done for statics (Landau 1990, Chen and Landau 1994). The
divergence of the correlation lengthξ in the critical region is limited by the linear dimension
of the system,L. Replacingξ by L in the previous equations, and including the resolution
function parameterδω, we find∫ ω̄m

−ω̄m
S̄κL(q̄, ω)

dω

2π
= 1

2 S̄
κ
L(q̄) (4.16)
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with S̄κL(q̄) =
∫∞
−∞ S̄

κ
L(q̄, ω)dω/2π and

S̄κL(q̄, ω) = ω−1S̄κL(q̄) F (ω/ωm, qL, δω/ωm) (4.17)

whereF is a function which depends onf . We can then express̄SkL(q̄, ω) in a scaling form,

ωS̄kL(q̄, ω)

S̄kL(q̄)
= G(ωLz, qL, δωLz) (4.18)

whereG is another unknown function. The median frequencyω̄m should then scale as

ω̄m = L−z�̄(qL, δωLz) (4.19)

where the explicit form for function̄� is also unknown. The different quantities,S̄kL(q̄, ω),
S̄kL(q̄) andω̄m, can be measured by simulations and used to test dynamic scaling and estimate
the dynamic critical exponentz. The difficulty in choosing a shape function is avoided since
the characteristic frequency can be estimated without that knowledge.

It is generally preferable to use (4.19), rather than (4.18), to determine the dynamic critical
exponentz due to the statistical fluctuations in̄SkL(q̄, ω); these can be more or less averaged
out in determiningω̄m by the integration and the normalization. Because the explicit form for
function�̄ in (4.19) is generally unknown,zmay be extracted by self-consistent iterations. If
the two arguments of the function̄� are held fixed, then

ω̄m ∝ L−z. (4.20)

For the first argument of̄�, the product ofq andL is fixed, since we are interested in only
thoseq values determined by the periodic boundary conditions, i.e.

q = nq(2π/L) nq = 0, 1, 2, . . . , L. (4.21)

For the second argument, we choose

δω = a(40/L)z (4.22)

where, withtmax = 100/J , a = 0.025, in units ofJ , was chosen empirically to provide a
good compromise between effectively reducing the ‘cutoff’ oscillations and not excessively
broadening the structure of theS(q, ω). An initial valuez(0) is picked and used to determine
δω by (4.22) for differentL. ThenS̄kL(q̄, ω) andω̄m are calculated for different combinations
ofL andq with nq . A new estimate,z(1), can then be extracted from the simple relation (4.20),
which is a special case of (4.19) with the function�̄ kept constant.

This process can be further simplified if the time integration can be carried out to long
enough time that no resolution function is necessary. Then, (4.18) and (4.19) simplify to

ωS̄kL(q̄, ω)

S̄kL(q̄)
= G(ωLz, qL) (4.23)

and

ω̄m = L−z�̄(qL). (4.24)

Thus, z is given by the slope of a graph of logωm against logL at fixed value ofqL.
Alternatively, (4.23) implies that for correctly chosenz and for a fixed value ofqL, graphs
of SkkL (q, ω)/{LzSkkL (q)} againstωLz should all fall onto the same curve for different lattice
sizes. Both procedures will only be valid for sufficiently large lattice size
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5. Results and comparison with theory and experiment

5.1. One-dimensional XY model in a symmetry breaking field

Arguably the most famous set of experimental measurements of a ‘1D’ magnetic system are
those shown in figure 2 for CsNiF3 (Kjems and Steiner 1978). There were some disagreements
between theoretical predictions and the experimental results, but whether was unclear whether
this was a deficiency of the theory or a deficiency of the model used. From the results obtained
from the spin dynamics simulations, shown in figure 3, it is clear that there is good overall
qualitative agreement between the results for the ferromagneticXY chain in a transverse field
and the theoretical mapping onto the sine–Gordon equation. There are quantitative differences
in peak half-widths and intensities, however, and these limit to some extent the agreement
that can be expected between the analytic theory and experiment. The experimental data had
limited resolution and the different polarizations could not be measured directly. We note that
2π solitons could be observed directly in the simulations. Spin dynamics simulations for the
corresponding antiferromagneticXY chain (Staudingeret al 1985, Gerling and Landau 1992)
showed a more complicated dynamic structure factor than for the ferromagnet. Even more
intriguing was the discovery of multiple kinds of ‘π -soliton’ including one type that had not
even been predicted theoretically.

Figure 2. Inelastic neutron scattering data for CsNiF3 in a transverse field. The open circles are
the data with the background subtracted; the solid curve a is fit to the data using Lorentzian spin
wave peaks and a Gaussian central peak. (From Kjems and Steiner 1978.)

5.2. Two-dimensional easy-plane magnets and the XY model

Inelastic neutron scattering experiments have been carried out on several different layered
materials which can generally be described as anisotropic 2D Heisenberg models, and these
generally prove to be the closest physical realizations of theXY model. These include
Rb2CrCl4 (Hutchingset al 1986, Bramwellet al 1988) and BaNi2(PO4)2 (Regnaultet al
1983). The highest resolution experimental studies have been carried out on stage 2 CoCl2

intercalated graphite (Wiesleret al 1994) and find four temperature regimes with different
behaviour. There are indications of a Kosterlitz–Thouless transition at a temperature ‘Tu’,
though some properties disagree with KT predictions. For ‘Tl ’< T <‘Tu’, they observe spin-
wave peaks, but it is not clear whether a central peak is present. (In this region the long range
part of the scattering function shows true 2D character, whereas forT <‘Tl ’ 3D correlations
develop.) Above ‘Tu’, the in-plane scattering function shows the expected central peak, and
the out-of-plane function exhibits damped spin waves. (In figure 10 we will show intensity
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(a)

(b)

Figure 3. Spin dynamics data forS(q, ω) for a 1DXY model: (a) T = 0.4J/k, h = 0.1J ,
q = π/8. The dashed lines are fits of a resolution broadened Gaussian central peak and a Lorentzian
spin-wave peak. (b) T = 0.2J/k, h = 0.1J , q = π/8. The solid curve is the prediction from the
sine–Gordon model; the dashed line uses the dispersion relation from the harmonic approximation.
(From Gerling and Landau 1990.)

data from inelastic neutron scattering and make a direct comparison with both theory and
simulation.) Although the resolution is not as good as for the simulations, one can see the
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development of overdamped spin waves just above ‘Tu’ and the presence of both a spin-wave
peak and a central peak well belowTu. We should perhaps note here that there is experimental
evidence that both defects as well as residual 3D coupling limit the ‘effective size’ of the 2D
XY -like system to of the order of 100 lattice spacings. Further discussion and an extensive
listing of relevant literature can be found elsewhere (Wiesleret al 1994).

Spin dynamics simulations for easy-plane Heisenberg magnets (0< λ < 1, D = 0,
andH = 0) in d = 2 have examined the contribution of vortices, spin waves and their
interaction to the dynamic structure factor although much of this work is of modest quality.
For T > TKT they have served as the major test of the phenomenological ideal vortex gas
picture of the dynamics ind = 2 magnets (Mertenset al 1987, 1988, 1989). Kawabataet al
(1986) and Landau and Gerling (1992) simulated theXY model (λ = 0) with L 6 204 and
found both spin-wave peaks and a central peak. The resolution was too limited, however, to
allow quantitative comparison with theory or to estimate the dynamic exponent. Simulations
show thatSxx(q, ω) andSzz(q, ω) behave differently.Sxx(q, ω) is globally sensitive to the
presence of vortices (Mertenset al 1987, 1988, 1989). In real space–time each vortex which
passes a line connecting the origin (0, 0) and (r, t) becomes visible as a ‘kink’ inSxx(r, t), i.e.,
Sxx(r, t) changes its sign when (r, t) passes through a vortex core. According to this picture the
shape ofSxx(q, ω) is given by a squared Lorentzian, (2.25), in which the Kosterlitz–Thouless
correlation lengthξ shows up as the dominant length scale. This picture has been supported
by spin dynamics simulations forλ = 0 (XY model) (Mertenset al 1987, 1988); the line
width and the integrated intensity of the central peak agree well with the phenomenological
theory. For wave vectorsq � ξ−1 the spin-wave contribution to the intensity exceeds the
vortex contribution, which decays asq−3 in this regime (Mertenset al 1989). The vortex
gas theory only works on length scales much larger than the vortex core radiusrv, so that
q � r−1

v is required in (2.25) and therefore theq range in which the vortex gas theory yields
an adequate description shrinks. This has also been confirmed by spin dynamics simulations
(Mertenset al1989). In the limitλ→ 1 the vortex gas description finally becomes invalid for
anyq. In contrast,Szz(q, ω) is locally sensitive to the presence of vortices. If one considers
only incoherent scattering from independent vortices, the vortex gas theory yields a Gaussian
central peak inSzz(q, ω) at high temperature, see (2.26). Spin dynamics simulations show
that the linewidth is linear inq; however, from vortex gas theorySzz(q, ω) = 0 for λ = 0
(XY model) in clear disagreement with the simulations which still give strong evidence for
a distinct central peak inSzz(q, ω). More recent simulations show that the central peak only
appears forλ > λc (Costa and Costa 1996), although this conclusion has been questioned
(Gouv̂ea and Wysin 1997). Strong fluctuations in the number of vortices as a function of time
suggest that vortex–anti-vortex pair creation/annihilation may be responsible for the central
peak. The phenomenological vortex gas picture can thus only be used as a first approximation
to out-of-plane correlations whenλ is large enough.

To further determine the role which vortices play ind = 2 magnets, detailed simulations of
the vortex dynamics have been performed (Wysin 1990, Wysinet al1988, Gouv̂eaet al1989)
with spin waves suppressed by the introduction of Landau–Gilbert damping in the equations
of motion. As initial configurations single vortices or vortex–anti-vortex pairs were chosen on
different lattices and the simulations performed at constant energy and at fixed temperature,
but averages were taken over only three initial configurations. Planar vortices are stable for
anisotropiesλ < λc and develop out-of-plane components only forλ > λc. Likewise, an out-
of-plane vortex relaxes to an in-plane vortex forλ 6 λc and is stable only forλ > λc. More
detailed simulations find thatλc ' 0.71 for a square lattice (Costa and Costa 1996). A planar
vortex pair is stable if the initial separation between the vortices is large enough (typically
half the linear lattice size) andλ 6 0.7 (square lattice). For small initial separations out-of-
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plane components develop from an initial in-plane configuration. Forλ > 0.8 out-of-plane
components even develop for a large initial separation; the vortex and the anti-vortex move
towards one another along spiral trajectories and may finally annihilate each other. These
simulations indicate that correlations in the out-of-plane spin motions emerge from moving
planar vortices rather than exclusively from static vortices with out-of-plane components.
According to this modified vortex pictureSzz(q, ω) still shows the Gaussian central peak in
(2.26). The line width is linear inq as in (2.26) which is supported by the simulation data
(T > TKT ) (Gouv̂eaet al 1989). The integrated intensity agrees with the Monte Carlo data
to within the order of magnitude. Whether the line shape is really Gaussian, however, cannot
be decided on the basis of the numerical data. More complete simulations have now been
performed with much higher statistics forλ = 0 (XY model) (Evertz and Landau 1996) which
will be described later in this section.

The motion of vortex pairs has also been studied for easy-plane antiferromagnets (Völkel
et al 1991a), where the vortices in non-stationary vortex pairs move towards one another
on straight rather than spiral trajectories. The reason is that the spins in the out-of-plane
component of a vortex are antialigned in an antiferromagnet and do therefore not produce
an effective magnetic field between the vortices. As in the case of easy-plane ferromagnets
the vortices are almost in plane forλ 6 λc, whereλc ' 0.71 for a square lattice. The
dynamic correlations in easy-plane antiferromagnets are somewhat more complicated than in
their ferromagnetic counterpart. This is on one hand due to the presence of two distinct spin-
wave branches, namely an in-plane (optical) branch and an out-of-plane (acoustic) branch. On
the other hand spins in vortices are antialigned rather than aligned so that forλ < λc the static
vortex structure (T > TKT ) leads to a central peak atq = (π, π) in Sxx(q, ω), just where the
dispersion of the optical branch has its zero. Spin-wave contributions toSxx(q, ω), however,
vanish completely at thisq value. Motion of free vortices forT > TTK produces a central
peak atq = (0, 0) in Szz(q, ω) apart from a distinct spin wave peak which remains visible
even aboveTKT . Forλ > λc out-of-plane vortices with antiferromagnetic structure are stable
(Völkel et al 1991a) so that vortex peaks are expected to appear atq = (0, 0) andq = (π, π)
in bothSxx andSzz. Forλ = 0 andT > TTK the simulation data for the central peak inSxx are
well described by a squared Lorentzian shape function (see (2.25) forq→ (π, π)− q). The
q dependence of the line width and the integrated intensity are in good agreement with vortex
theory in the temperature rangeTKT 6 T 6 1.25TKT . Above 1.25TKT diffusive spin motion
begins to dominate. As in the previous cases the predicted Gaussian line shape of the central
peak inSzz, see (2.26), cannot be uniquely verified, because the spin-wave peak dominates
for most of theq values. However, for smallq the simulation yields a line width which is
consistent with the analytic prediction (Völkel et al 1991b). Spin dynamics simulations of
a 2DXY model in a transverse magnetic field (Gouvêaet al 1990) suggest thatSxx is more
sensitive to domain walls whereasSyy andSzz are to vortices. Spin dynamics simulations
have also been used to investigate the isotropic antiferromagnet (λ = 1) in d = 2 near the
antiferromagnetic Bragg pointq = (π, π) (Wysin 1990). From the isotropy of the model it
is evident that all components of the dynamic structure factor are equivalent. This symmetry
also implies thatS(q, ω) is well described by a product of symmetrically located Lorentzians
for q values close to (π, π ). The simulation data agree with this peculiar line shape.

The most complete simulations of an easy-plane ferromagnet are forλ = 0 (XY model)
by Evertz and Landau (1996) who studiedL × L lattices with periodic boundary conditions
for 16 6 L 6 192, both below and aboveTKT . Equilibrium configurations were created at
each temperature using a hybrid Monte Carlo method which combined cluster updates of the
x andy spin components (using the Wolff embedding method) (Swendsenet al 1992) with
vectorized Metropolis and overrelaxation spin reorientations (Landau 1992) to produce rapid
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decorrelation of successive configurations. Between 500 and 1200 equilibrium configurations
were generated for each lattice size and temperature, and the error bars in the figures represent
statistical errors for averages over these configurations. The time integration was done using
a vectorized fourth-order predictor–corrector method with1 = 0.01/J and a maximum
integration time oftmax = 400/J . To reduce memory and CPU time, only momentaq = (q, 0)
and (0, q) were calculated, withq determined by the periodic boundary conditions (see (4.21)),
and data from these two spatially equivalent directions were averaged together to enhance the
statistical accuracy. Fast Fourier transforms were used to calculate correlation functions. For
T 6 TKT theXY model is critical and the dynamic exponentz can be extracted using dynamic
finite size scaling theory. For this analysis no resolution function was needed to smoothen the
effects of finitetmax because of the long integration times.

The results of the initial analysis prompted additional static Monte Carlo studies which
provided an improved estimate ofTKT = 0.700(5); additional (but less extensive) spin
dynamics simulations were then performed there. Figure 4 shows the temperature dependence
of S(q, ω) as a function ofω, for L = 192 and fixed, small momentumq = π/48, i.e.
nq = 2 in (4.21). Sxx(q, ω) exhibits a very strong and moderately sharp spin-wave peak
at temperaturesT 6 TKT . The position of the peak moves towards lower frequency as the
temperature increases, and the peak broadens slightly. Just above the transition, atT = 0.725
there is still both a strong spin-wave peak and a sizable central peak, but at higher temperature,
the spin-wave peak disappears (for this smallq) and only a large central peak remains. Note
that from KT theory one would expect complete disappearance of a spin-wave peak at all
T > TKT . There is additional structure inSxx away from the spin-wave peak at temperatures
up toTKT .

Szz(q, ω) has structure with two orders of magnitude less intensity than the in-plane
component. There is a very sharp spin-wave peak forT 6 TKT , whose width is limited by
theω resolution, with noticeable finite time cutoff induced oscillations. The oscillations can
be smoothened by convolutingS(q, ω) with a Gaussian resolution function, as shown in the
inset; but this also masks the sharp nature of the spin-wave peak. No central peaks are visible
in Szz(q, ω) for T 6 TKT , and, in contrast toSxx(q, ω), there is a clear, but weak, spin-wave
peak at all temperatures, even aboveTKT . Below the transition, the intensity of the spin-wave
peak depends strongly on lattice size, whereas its position is constant. ForT = 0.725, the
spin-wave peak inSxx(q, ω) appears to gain intensity slightly asL increases, whereas neither
the central peak nor the spin-wave peak inSzz(q, ω) show any finite size effects. At higher
temperature there is no visible lattice size dependence in eitherSxx(q, ω) or Szz(q, ω).

The position of the spin-wave peak is the same forSxx(q, ω) and Szz(q, ω) and is
proportional to momentum for smallq. As q increases, the peak broadens, and becomes
less intense, yet it remains quite well defined. For thezz component, both the total intensity
and the relative loss of intensity with increasing momentum are much smaller. We conclude
thatSzz(q, ω) has the expected delta function form only for very smallq.

Well aboveTc, atT = 0.8,Sxx(q, ω) has no noticeable spin-wave peak at smallq, and the
strong central peak rapidly loses intensity with increasingq. In marked contrast, the behaviour
of Szz(q, ω) maintains a clear but broadened spin-wave peak although there is also non-zero
intensity at smallω in Szz(q, ω). Surprisingly, even at this temperature spin waves appear in
Sxx(q, ω) for very large momenta so that both a central peak and a spin-wave peak are present.
Note that the scale in figure 4(b) is about 100 times smaller than in figure 4(a). Figure 5 shows
the positionωp of the spin-wave peak as a function of momentum. The expected linear portion
of the dispersion curve extends to rather large momenta. With increasing temperature, the
spin-wave phase velocityωp/q, which is proportional to the spin-wave stiffness, decreases
slowly and approximately linearly, as shown in the inset, and theoretically expected for small
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Figure 4. Spin dynamics data for the 2DXY model. NoteTKT = 0.700(5). L = 128 andnq = 2
in all cases: (a) transverse component; (b) longitudinal component; the inset shows data atT = 0.6,
smoothed with a resolution function. (From Evertz and Landau 1996.)

T (Nelson and Kosterlitz 1977). AboveTKT we can only plot the position of the residual peak
in Szz(q, ω); thexx component has dropped sharply to zero.

Below TKT the data forSxx(q, ω) show additional very small peaks with intensities
typically 10−2 of that of the spin-wave peaks. No such structure can be found inSzz(q, ω).
At each temperature the locations of the small peaks are essentially unchanged withL for
fixed nq = qL/(2π). One simple explanation which is consistent with the data, but for
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Figure 5. Spin dynamics results for the frequencyωxx for the 2DXY model: spin wave against
momentum, forL = 192. Note that atT = 0.8 only Szz(q, ω) has a spin-wave peak. The inset
shows the temperature dependence of the spin-wave velocity∂ω/∂q. (From Evertz and Landau
1996).

Figure 6. Spin dynamics data for the ‘fine structure’ inSxx(q, ω) for the 2DXY model for
T = 0.6, L = 192,nq = 3; vertical arrows show the expected location of two-spin-wave peaks.
The single-spin-wave peak volume is about 300. (From Evertz and Landau 1996.)

which we have no rigorous theory, is two-spin-wave effects.S(q, ω) should show a single
spin-wave peak at a characteristic frequencyωp plus additional sum and difference peaks
due to two-spin-wave processes involving total momentumq. The resultant positions of the
excitations involving the most likely (i.e. smallest individualq value) excitations for the case
of nq = 3 andT = 0.6 are marked in figure 6 and identified by the coordinates of the
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first vector in reciprocal space; the sum of the two spin-wave momenta must equalq = 3
(2π/L). The locations of the resultant excitations agree extremely well with the positions of
the small peaks inS(q, ω), but there is no way of comparing intensities. Interpolating the
intensities for odd values ofnq (which do not show peaks atω = 0) to obtain estimates for
evennq , we conclude that there is extra intensity atω = 0 which isnot attributable to two spin
waves.

The characteristic frequencyωm of the whole spectrum ofS(q, ω) is defined by (4.16).
When there is only a single spin-wave peak, thenωm coincides with the spin-wave frequency
ωp, e.g. forT = 0.4. Closer to the transition, intensity betweenω = 0 andωp grows; therefore
the characteristic frequencyωxxm < ωp. The dynamic exponentz can be extracted by analysing
ωm, or by looking atS(q, ω) itself. In figure 7 we showωxxm L

z as a function ofqL, forT 6 TKT
usingz = 1.0. The data show good scaling behaviour for both temperatures. The asymptotic
behaviour for largeL is strictly linear,ωmLz ∼ qL, i.e. for z = 1, ωm ∼ q. For each finite
lattice size the dispersion curve flattens whenq becomes large. Therefore asL increases, the

Figure 7. Finite size scaling of the characteristic frequency for the 2DXY model determined from
spin dynamics simulations;ωxxm Lz is plotted againstqL. (From Evertz and Landau 1996.)
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data start to move away from the asymptotic behaviour at progressively larger values ofqL.
For different values ofz the data do not fall onto a common line even at the smallest momenta.
Remarkably, the scaling curves forωxxm at allT 6 TKT are similar, with variation only in their
slope. In contrast to this, we do not observe similar scaling behaviour inωxxm atT > Tc.

For q 6= 0, ωzzm has the same scaling behaviour as the in-plane component. AtT = 0.4
the data are indistinguishable, but as intensity below the spin-wave peak grows at higherT ,
the scaling curve forωzzm develops a larger slope thanωxxm . Interestingly, atT = 0.8, above
the transition, not only are there spin-wave peaks in present inSzz(q, ω), butωzzm also shows
‘effective’ scaling behaviour as below the transition, withz = 1.0.

Figure 8. Finite size scaling of spin dynamics results for the transverse dynamic structure factor
Sxx for the 2DXY model;ωS(q, ω)/S(q) is shown versusωLz, with constantnq . The curves
correspond to different lattice sizes. (From Evertz and Landau 1996.)

If dynamic finite size scaling holds, then the scaled dynamic structure factor should fall
onto a single curve for sufficiently large lattices. Figure 8 shows a scaling plot forSxx(q, ω);
for all T 6 TKT the data do indeed fall onto a single curve, whenz = 1.00. Only data from
very smallL (not shown here) deviate systematically. Note that scaling withωLz implies that
at fixedqL the spin-wave peak for largeL is very narrow. Its width is therefore very sensitive
to tmax in the spin dynamics integration, thus necessitating very long time integrations. The
scaling behaviour is very sensitive to variations inz leading to errors bars which are less than
3%. Note thatz is the same across a range of temperature for which the static exponentη varies
strongly, fromη = 0.082(1) atT = 0.4 toη = 0.247(6) atT = 0.700.Szz(q, ω) is extremely
narrow atT = 0.4 andT = 0.6, and cannot show scaling given thetmax used, but atT = 0.700
the spin-wave peak in (q, ω) has broadened and scaling is verified. Figure 9 compares the
results with theoretical predictions for the shape ofS(q, ω). Neither the prediction by Nelson
and Fisher (1977) nor by Moussa and Villain (1976) describe the data well. Both predicted
lineshapes exhibit a much narrower and higher spin-wave peak than the data, even when we
take into account the widening of the data due to the finite time cutoff, and neither show a
central peak. The prediction by Moussa and Villain also decays too slowly at high frequencies.
Inelastic neutron scattering data for CoCl2-GIC show the development of both a spin-wave peak
and a broad central peak. Neutron scattering data (Hutchingset al 1986) for Rb2CrCl4 have
too much scatter to allow any quantitative comparison, although they have been interpreted
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(a)

(b)

Figure 9. (a) Comparison of the spin dynamics lineshape for the 2DXY model,Sxx(q, ω), with
theoretical predictions, atT = TKT , L = 128 andq = π/32. Thin curves represent predictions
by Nelson and Fisher and by Villain (withη = 0.25 and with a suitably adjusted prefactor). (From
Evertz and Landau 1996.) (b) Inelastic neutron scattering results for CoCl2-GIC (from Wiesler
et al 1994).
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in terms of both spin-wave and central peaks. Magnetic scattering data (Regnaultet al 1983)
for BaNi2(PO4)2 show a very pronounced central peak and a spin-wave peak, both primarily
transverse in character.

The central peak has been ascribed to diffusion of vortices. This interpretation was
called into question by Costaet al (1997) who studied both vortex motion as well as vortex
creation/annihilation as a function of time. They find little vortex motion except at high
temperatures; instead the vortices are rather quickly annihilated and recreated elsewhere.

5.3. Three-dimensional critical dynamics of the Heisenberg model

5.3.1. Isotropic systems.Spin motions in the classical,d = 3 Heisenberg ferromagnet were
studied almost three decades ago (Watsonet al 1969), but the limited resolution possible at
that time made quantitative analysis impossible (tmax was limited to less than 20/J ). More
recent simulations have shown that it is now possible to probe the critical regime. We remind
the reader that dynamic scaling suggests thatz = d − β/ν for class J, and various theories
(Hohenberg and Halperin 1977, Wagner 1970, Freedman and Mazenko 1976, Cuccoliet al
1994) predict thatz = d/2 for class G. Both systems have now been studied with spin dynamics
methods usingL×L×L body-centred-cubic systems with periodic boundary conditions. The
critical point is known accurately (Chenet al 1993),Tc = 2.054 241J/k.

Spin dynamics simulations for the ferromagnet were carried out for 166 L 6 40. A
fully vectorized, checkerboard hybrid algorithm (Landau 1992) was used to reduce critical
slowing down and a vectorized fourth-order predictor–corrector method was used to perform
the integration. A Cartesian coordinate system in spin space was chosen such that itsz axis
was in the same direction as the magnetization of the spin configuration, andtmax = 120/J
with a time step 0.01/J . For T = Tc with L = 40, a variation only in the fifth digit of the
total energy and in the sixth digit of the length of individual spins was observed.

At Tc the magnetization survives because of finite size effects, and the transverse
component and its longitudinal counterpart still behave slightly differently. Due to statistical
fluctuations, finite size effects inS(q, ω) are not easily observable; however, systematic shifts
in the peak position and in the magnitude of the wings of the transverse component can be
seen. For the longitudinal part we can also observe a systematic change in the intensity at
ω = 0. It turns out, as we will see later, that a better way to look into the finite size behaviour
is to draw a scaling plot according to (4.19) by fixing the values ofqL andδωLz. Because the
behaviour of the transverse neutron scattering functionS⊥L (q, ω) in the critical region is not
complicated by the residual magnetization as isS

‖
L(q, ω), it is best suited for closer study. The

temperature dependence of the spin-wave frequency, read directly from the peak position, in
the vicinity of the critical point can be easily measured for different lattice sizes. Systematic
rounding appears when(1− T/Tc) < 0.03. This is clearly due to finite size effects, because
this temperature range is so close toTc that the correlation length becomes limited by the linear
dimension of the system. On the other hand, finite size effects seem to be negligible for the
system withL = 40 further away fromTc. If finite size effects are negligible and theq value is
small and fixed, both mode-coupling theory and hydrodynamic theory (Wagner 1970, Cuccoli
et al 1989) predict that the spin-wave frequency should vary as(1− T/Tc)ν−β . Fits to data
with L = 40 and(1− T/Tc) > 0.03 for nq = 2, 3 yield two estimates whose mean value
gives(ν − β) = 0.316(21). Direct measurements give(ν − β) = 0.3409(65) so, within their
respective error bars, results from static and dynamic properties are in good agreement. The
dynamic critical exponentz can be extracted from̄ωm by the iteration scheme described in
the previous section. When applied atTc for nq = 2, using two different initial values ofz(0),
the two iterations converge toz = 2.498. A similar analysis fornq = 3 was made, and in
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figure 10 the size dependence ofω̄m is plotted on a logarithmic scale. When not shown, the
estimated error bars for individual points are smaller than the size of the points. Within their
respective error bars, the two estimates forz agree and yield an average ofz = 2.478(28).
Experimentally,z was estimated to be 2.50± 0.07 from inelastic neutron scattering data for
EuO (Böni and Shirane 1986, B̈oni et al1987); this value is consistent with the spin dynamics
estimate but with a larger uncertainty.

(a)

Figure 10. Determination of the dynamic critical exponent. (a) Finite size dependence of the
median frequency obtained from spin dynamics data forS(q, ω) for the body-centred-cubic classical
Heisenberg ferromagnet. The inset shows the result of the iterative analysis. (b) Neutron scattering
data for the half-width for EuS (B̈oni et al 1987).

The dynamic finite size scaling behaviour ofS⊥L (q, ω) is plotted in figure 11 fornq = 2
with z = 2.478. The estimated error bars for individual data points are shown unless they are
smaller than the size of the symbols. Within their respective error bars, data points collapse
onto the same curve, thus supporting the estimate forz. With values ofν andβ which were
obtained from a high-resolution Monte Carlo study of static critical behaviour the dynamic
scaling law (Hohenberg and Halperin 1977)z = 2 + (ν − β)/ν predictsz = 2.4837(72). The
dynamic result(ν − β) = 0.316(21), together with static result forν, yieldsz = 2.448(32).
Within their respective error bars, these two estimates are consistent and agree well with
the valuez = 2.478(28) from dynamic scaling. The range of validity of dynamic scaling
was found to be limited, i.e. forq > 0.5/π , e.g.n = 4 for L = 16, the data are outside
the scaling (figure 11) regime. For comparison we note that a (Metropolis) Monte Carlo
study of this model (Peczak and Landau 1993) yieldedz ∼ 1.96 for relaxational critical
behaviour.

Spin dynamics simulations at high temperatures for an fcc Heisenberg ferromagnet
(Chaudhury and Shastry 1988) found good agreement with neutron scattering data on EuO
(Böni and Shirane 1986) and with the predictions of Young and Shastry (1982). They did not
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(b)

Figure 10. (Continued)

find the two-peak structure predicted by Lindgård (1983) near the zone boundary. Closer to
Tc dipolar effects become a consideration (Lovesey and Williams 1986, Balucaniet al 1987),
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(a)

(b)

Figure 11. Dynamic finite size scaling of the transverse component ofS(q, ω) for bcc Heisenberg
magnets. (a) the ferromagnet withnq = 2 andz = 2.478 (Chen and Landau 1994); (b) the
antiferromagnet withnq = 2 andz = 1.48 (Bunkeret al 1996).

but no spin dynamics simulations have yet been performed with dipolar couplings.
Many of the qualitative features of the data obtained by spin dynamics for the

antiferromagnet (Bunkeret al 1996) were similar to those for the ferromagnet. Data are
compared with experiment in figure 12. BelowTc the spin-wave peak becomes narrower and
increases in frequency, as expected, and it approaches linear spin-wave theory at lowT . Peak
widths even forT = 1.0J are wide enough that the contribution due to the finite resolution
is negligible. The longitudinal and transverse spin waves are at the same frequency; however
the spin wave peak is much less intense in the longitudinal component than in the transverse
component. This is to be expected since according to linear spin-wave theory longitudinal
excitations vanish asT → 0.

At Tc the longitudinal component is similar in form to that of the Heisenberg ferromagnet
with both a central peak and a spin-wave peak. As is the case forT < Tc there is a much stronger
central diffusion peak in the longitudinal component than in the transverse component. The
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(a)

(b)

Figure 12. Spin dynamics data forS(q, ω) for the bcc Heisenberg antiferromagnet: (a) transverse
component; (b) longitudinal component (Bunkeret al 1996). (c) Inelastic neutron scattering data
for RbMnF3 (Tucciaroneet al 1971).

spin-wave peak of the longitudinal component is also weaker than in the transverse component.
Whenq increases the overall intensity goes down and the spin-wave peak frequency increases
and the peak broadens. While over mostq values the relative intensities of the central and
spin-wave peaks remain constant, at very smallq the relative intensity of the central peak
decreases. Finite size effects extend to largerL for the central peak than for the spin-wave
component, but no finite size effect is noticeable forL. Results forS⊥L (q, ω) are in qualitative
agreement with the experimental results (Tucciaroneet al 1971, Coxet al 1989, Coldeaet al
1998) in that there is both a central peak as well as a spin-wave peak, but there appear to
be pronounced quantitative differences between the two sets of neutron scattering data. The
newer results (Coxet al 1989, Coldeaet al 1998), taken just belowTN , show a much weaker
central peak of clearly longitudinal nature. In contrast, as shown in figure 13, mode coupling
theory (Cuccoliet al 1994) does not predict a central peak atTc.

As expected the dispersion curve looks quite different for the antiferromagnet and the
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(c)

Figure 12. (Continued)

ferromagnet. (For smallq the spin-wave peak was completely hidden by the central peak.)
The dispersion curve values we were able to obtain, however, show the decreased frequency
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Figure 13. Dynamic structure factor atT = Tc as predicted from mode–mode coupling theory
for the isotropic Heisenberg antiferromagnet (AF). (a) Near the Brillouin centre; (b) near the AF-
ordering wave vectorw = (1, 1, 1). The wave vectors in units of (π/12a0) are: 1, (0,0,1); 2, (0,1,1);
3, (1,1,1); 4, (11,12,12); 5, (11,11,12) and 6, (11,11,11). (Cuccoliet al 1994.)

as predicted by renormalization group theory (Freedman and Mazenko 1976).
In order to test the dynamic scaling theoryωm(qL) was determined fromS⊥L (q, ω) with

fixed values ofqL for all lattice sizes. The integration times used for the antiferromagnet were
long enough that the use of a resolution function was unnecessary andz could be extracted
directly without using the iterative procedure described earlier for the ferromagnet. If data
for all L are used to determinez from the slope of the log–log plots ofωm againstL, a
value of approximatelyz = 1.4 is obtained; however using only the three largest lattices one
finds z = 1.48(4). Clearly corrections to the asymptotic finite size effects are subtle and
important. The estimate ofz = 1.48(4) agrees well with the experimental results (Tucciarone
et al 1971, Coldeaet al 1998) and with dynamic scaling theory. The scaling ofS⊥L (q, ω)
itself was tested, and a finite size scaling plot withz = 1.48 is shown in figure 11; the
data fall upon a single curve, to within the error bars, but forL = 16 there are systematic
deviations.

5.3.2. Anisotropic systems.The effect of uniaxial anisotropy in magnetic systems has been
the subject of experimental and theoretical work (Als-Nielsen 1976). As for the isotropic case,
where a physical system (RbMnF3) existed which was well described by this model, there are
good physical realizations for anisotropic models: MnF2 (Helleret al1971) and FeF2 (Schulhof
et al1971a, Hutchingset al1972) which are well described by this model with weak and strong
single-site uniaxial anisotropy respectively. The degree of anisotropy can be found from the
ratio of the spin-wave peak energy at the zone centre to that at the zone boundary, and has been
found to be 0.17 for MnF2 and 0.66 for FeF2. Theoretical studies of the effect of single-site
anisotropy on the classical three-dimensional Heisenberg system (Lovesey and Balcar 1995)
predict that the dynamic structure factor will display a strong diffusive longitudinal component
and a suppressed propagative transverse component.S⊥L (q, ω) should be non-critical in nature,
tending to a constant value in the limitq → 0, andS‖L(q, ω) should be critical with a predicted
dynamic critical exponentz ≈ 2; the renormalization group predictsz ≈ 2.19 (Hohenberg
and Halperin 1977).

Simulations were performed (Landauet al 1998) with anisotropies appropriate to each
system so that both statics and dynamics could be compared with existing theory and
experiment. In the limit ofq → 0 three quantities may be measured by experiment, theory and
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simulation, i.e. the halfwidth of the dynamic structure factor when fitted to a central Lorentzian,
the relaxation rate and the value of the characteristic frequency, respectively. If the component
of S(q, ω) being measured is non-critical then all three of these will converge to a constant
value asq → 0. If it is critical then all three of these will approach a power decay, with the
rate given byz, the dynamic critical exponent.L × L × L body-centred-cubic lattices with
periodic boundary conditions were simulated for 206 L 6 46. Hybrid Monte Carlo methods
were used to generate initial states, and the critical temperatures were accurately determined:
for D = 1.324 (FeF2), J/kTc = 0.439; and forD = 0.0591 (MnF2), J/kTc = 0.478. The
spin dynamics techniques discussed earlier were then used to study the dynamic behaviour.
For the highly anisotropic system this correlation time was very large, and the spin dynamics
simulation then consumed enormous computer resources due to the large number of MC steps
needed to produce new equilibrium configurations.

(a)

Figure 14. Dynamic structure factor for an anisotropic Heisenberg antiferromagnet: (a) spin
dynamics data atTN ; (b) neutron scattering data for FeF2 (Hutchingset al 1972).
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(b)

Figure 14. (Continued)

The low temperature data showed quite pronounced spin-wave peaks, the locations of
which provided good estimates for the dispersion relations. The predictions of linear spin-
wave theory (T = 0) agree well, although even at this low temperature there is a very slight
energy renormalization, particularly for largeq.

Initial results from the spin dynamics atTc for the large anisotropy case indicated that the
longitudinal component ofS‖(q, t) had a much longer relaxation time than in the isotropic
case, so the study of the lowq behaviour was intractable (it would requiretmax > 1000/J ).
The data, see figure 14, reveal only a central peak inS

‖
L(q, ω) indicating purely dissipative

behaviour. A comparison of the data forS‖L(q, ω) with those forS⊥L (q, ω) show that the
longitudinal component is much more intense, in agreement with both existing theory and
experiment results. The transverse component has a short relaxation time soS⊥L (q, ω) could
be measured over the full range ofq values using a very shorttmax = 8/J . (Such a small value
was chosen because of the large quantity of computer time required by the MC part of the
spin dynamics simulation of the highly anisotropic case.) For 206 L 6 46 the characteristic
frequency for the transverse component approaches a constant value with increasingL in
the limit of smallq, indicating non-critical behaviour. The shape ofS⊥L (q, ω) shows a spin-
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wave peak, with the possible addition of a small central peak. These findings are in general
agreement with theory and experiment. Neutron scattering data for the transverse component
for FeF2 (Hutchingset al 1972) show only a central peak at the Néel temperature and yield
a value ofz = 2.1± 0.2. With such large error bars this estimate cannot decide between
competing theoretical predictions. Note thatz ∼ 2.04 for (Metropolis) critical relaxation in
the anisotropic limit, the 3D Ising model (Wansleben and Landau 1991, Kikuchi and Ito 1993).

Preliminary spin dynamics simulation results for the case of weak anisotropy (MnF2) show
purely dissipative behaviour only at lowq values of the longitudinal component ofS(q, ω).
This indicates crossover to isotropic behaviour due to the weak nature of the anisotropy. The
transverse component shows stronger propagative excitations than in the case of stronger
anisotropy. This is to be expected since the transverse excitations in the isotropic case are
much stronger than those of the strongly anisotropic case. Although not yet complete, these
simulational data already show the resolution needed to extract useful information from the
dynamic structure factor. With anisotropy present the longitudinal component of the dynamic
structure is purely dissipative and the transverse component is non-critical with a weakened
spin wave peak. Neutron scattering data for the transverse component for MnF2 (Schulhof
et al 1971b) shows non-critical behaviour atTN . The longitudinal relaxation rate suggests
thatz = 3/2, consistent with an isotropic system instead of that predicted for an anisotropic
model, although the authors express concern that they cannot really access the smallq regime
and may still be outside the asymptotic critical regime. If this is true, it means that there are
not yet sufficiently accurate results from either simulation or experiment to test theoretical
predictions.

6. Summary and conclusions

Spin dynamics simulations have now become a mature method for probing the time dependent
behaviour of magnetic systems. The combination of sophisticated Monte Carlo methods to
generate initial states and of high power time integration techniques makes it possible to
study larger systems to much longer times than ever before. Indeed, in some cases the spin
dynamics data exceed the resolution of real experiments. The picture which is emerging is one
in which the general features, including dynamic critical exponents, are correctly predicted
by theory. Line shapes and intensities, however, are generally predicted poorly by theory. In
some cases there are good experimental data for testing dynamic critical behaviour, but for
the most part lineshapes are still known with only modest accuracy. Other challenges remain
to be addressed by spin dynamics. For example, there are theoretical predictions for the
dynamics near multicritical points (Dohm 1983, Huber 1982) which remain to be tested. The
newly developed approach of higher order decomposition time integration methods promises
to extend the utility of the method still further.
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