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Abstract. Inthis article we review the progress which has been made in spin dynamics simulations
of simple models of magnetic systems. We will describe modern spin dynamics methods and show
results which have been obtained for a number of simple model systems. Where appropriate we
will make comparison with experimental results and theoretical predictions.

1. Introduction

Although the static properties of a large number of physical systems have been well
studied experimentally and many simple models have been examined by both theoretical and
simulational means, the study of the dynamic properties of magnetic systems is far less mature.
Arguably the most well developed simulational approach to these systems is the Monte Carlo
method in its various versions. Unfortunately these techniques are fundamentally stochastic in
nature and there is no correlation between the development of a syduonie Carlo timeand

in real timeg although the static averages turn out to be the same. An alternative approach to the
investigation of time dependent properties is to generate initial states, drawn from a canonical
ensemble using Monte Carlo methods, and to use these as starting points for the integration
of the coupled equations of motion. This method has been around for some three decades,
butitis only in recent years that efficient algorithms have been developed and computers have
become sufficiently fast that it has become possible to garner substantial information about
dynamic properties in ‘interesting’ regimes, e.g., near phase transitions.

The purpose of this article is to provide background on the spin dynamics method and to
describe the current status of results. An important issue which will also be considered is the
comparison between spin dynamics results and those of experiment on real, physical systems
as well as with theory. For simplicity, we shall restrict ourselves to systenvsfisked length,
three-component, classical spins which interact with the general Hamiltonian

H=—J ) (SiSjx+SiySjy +A8;:S;)+ DY SA+H Y S (1.2)
(i,]) i i

where the first sum is over all nearest neighbour pairgpresents exchange anisotropy,

is the single ion anisotropy anH is the external magnetic field. There are a number of

physical systems which are well approximated by (1.1), although for different systems, and
different experimental conditions one or more of the parameters may vanish. &dr and
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D = 0 (1.1) represents the classical, isotropic Heisenberg ferromagnet or the corresponding
antiferromagnet fo > 0 or J < 0, respectively. Research in the general area of critical
dynamics is now quite widespread and in the space available here it is simply not possible
to review all relevant material. We, therefore, emphasize at the outset that we have made a
subjective choice of the topics to be reviewed here and apologize in advance to those authors
whose work is not cited here.

2. Theoretical background

2.1. Critical dynamics in magnets

The dynamic properties of magnetic systems have been of great theoretical interest for over
30 years. The behaviour of propagating modes, such as spin waves, at low temperatures and
spin diffusion at high temperatures has been studied extensively. One particularly intriguing
aspectofthe time dependent behaviour of magnetic systemsis the ‘critical slowing down’ which
occurs as a second-order phase transition is approached. In a classic exposition, Hohenberg
and Halperin (1977) described the framework for understanding dynamic critical behaviour in
terms of universality classes which depended on a small number of properties of the models
such as lattice dimensionality and symmetry of the Hamiltonian. A new dynamic critical
exponent; was introduced to describe the divergence of the characteristic times scale as the
critical point is approached. Explicit predictions were made for simple models such as the
isotropic Heisenberg ferromagnet and antiferromagnét+n 3. In the following discussion
we confine ourselves to systems with short range interactions; the modifications which are
necessary when dipolar couplings are present have been reviewed by Frey and Schwabl (1994)
and will be treated only briefly here.

At the critical pointT, of an infinite system, the correlation timegrows asc ~ |q|~¢ as
the wave vectog of the mode approaches zero. Associated with the time sctidere is a
characteristic frequenay which has the scaling form

w=1ql*QqlIT —T.|™") (2.1)

wherev is the critical exponent of the correlation length. If the system is confined to a finite
box L4 the relaxation time of thg = 0 mode grows as ~ L? atT = T, a behaviour which
can be justified within the framework of dynamic finite-size scaling described in section 5.

The analytical theory of critical dynamics in classical Heisenberg ferro- and
antiferromagnets id > 2 is based on the Ginzburg—Landau Hamiltonian

1
Her =/ddx|:§|Vd>|2+g|<D|2+u|Cb|4] (2.2)

for a three-component order parametewherer o« (T — T,.)/ T, is a measure of the reduced
temperature and is the coupling constant. The static critical behaviour of Heisenberg ferro-
and antiferromagnets in 2 d < 4 is captured by (2.2). Within this coarse grained picture
the dynamics of an isotropic ferromagnet, which has been classified as model J by Hohenberg
and Halperin (1977), can be written in the form of the Langevin equation
R
a2 s 2077 o

(2.3)
H = Heor —/dddD -h(z, 1)

where the magnetization (order parameter)s conserved an® = (64, 62, 63) denotes a
Gaussian distributed white noise source with zero mean and correlations according to

(6 (x, 1)Bp(x', 1)) = —20V28 (x — x)8(t — 1)84 5. (2.4)
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Ao and go are Onsager coefficients. Note that (2.4) ensures the validity of the dissipation—
fluctuation theorem. The dynamic exponerior model J is given by

z::—ZL(d+2—n)=d—§. (2.5)
A simple argument which leads to (2.5) can be obtained from the behaviour of (2.3) for
T > T,: the only remaining characteristic frequency, the Larmor frequency, is proportional to
a magnetic field and thus has the same scaling dimension (Wagner 1970, Baakth76).

For an isotropic antiferromagnet the dynamics is quite different although the static critical
behaviour is still described by (2.2). In contrast to the ferromagnetic case, the order parameter
@ (staggered magnetization) is no longer conserved. Furthermore, the time evolution of the
order parameter is coupled to the usual magnetizatiowhose magnitude is eonserved
quantity that does not affect the static critical behaviour. The Langevin equations for the
isotropic antiferromagnet are classified as model G (Hohenberg and Halperin 1977):

D ) 8
—=—F0—H+g0d>x—H+®

ot 5P sm

am SH SH SH

— = AVP—— +god x — + —+E 2.6
ot Y g T80T X 5 TEOM X S (2.6)

2
H=HGL+/ddx|2m—| —/ddx(cl>~h(:c, 1) +m-hy(x,1)).
Xom

The noise source® = (01, 65, 63) andE = ({1, ¢, £3) are again Gaussian with zero mean,
but

(O (e, 1)0p(x', 1)) = 2T08(x — 2')8(t — 1')30 g (2.7)
where the correlations oE are given by (2.4). Note that the order parameabeand the

magnetization are not coupled by the HamiltontanIn contrast to the ferromagnet the spin
wave spectrum for the antiferromagnetirear in g for small|q|

o(q) = ¢lql with ¢ = py/xm (2.8)
wherec; is the spin wave velocity. The susceptibility, is always finite, whereas the stiffness
constant (helicity modulus), exhibits a critical singularity at the &&l temperatur&y, i.e.
ps ~ (Ty — T)"“=2 for T < Ty. In order to reconcile (2.8) with the general scaling form
given by (2.1) forT, = Ty one hasto se® (x) ~ x1~* forx « 1,i.e.forT < Ty andg — 0.
From the temperature singularity @f one obtains

z=dJ/2. (2.9)

Another interesting case is provided BgisotropicHeisenberg ferromagnets (see (1.1)

for A # 1). In contrast to the dynamics in an isotropic ferromagnet only tbemponent of
the magnetization is still conserved. Fore= 0 (1.1) describes a planar ferromagnet, which
has the same static critical behaviour ast@hmodel. According to the modified conservation
laws the dynamics of the planar ferromagnet represents a universality class distinct from the
ones mentioned above and has been classified as model E (Hohenberg and Halperin 1977). In
terms of a complex order parameter= m, + im, and the conservedcomponenin = m,
of the magnetization the Langevin equations read

0P SH SH

— = -Tog— —igo®— +©O

Y %5dx % sm

am §H SH

— = AVP— +2golm [ ® x — | + 2.10
at o sm 80 ( *SQ*) ¢ ( )

2
H = Her + / ddx% _ / dx(Re(® * h(x, 1)) + mhy, (x, 1))
0
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where® = 6, +i6, and ¢ are noise sources according to (2.7) and (2.4), respectively.

If (2.10) is rewritten in componentsn(, m,, m.) of the magnetization, one immediately
recovers the components of the usual Larmor term for the planar ferromagnet. By inspection
of equation (2.10) one obtains the impression that the dynamics of a planar ferromagnet is
closer to the dynamics of the isotro@ntiferromagne{model G) than to the dynamics of the
isotropic ferromagnet (model J). This is indeed the case even in a quantitative sense, because
the dynamic exponentis found to be the same as for model G (see (2.9)) by virtue of the
same arguments (Hohenberg and Halperin 1977).

2.2. Mode coupling theory of spin dynamics

Another theoretical approach to the dynamics of magnetic systems which is also based on a
coarse grained picture of magnets is provided by mode-coupling theory (see Kawasaki (1976)
for an extended review of this technique). As a starting point one considers the Heisenberg
equations of motion for the spin operatdif5(z) in momentum space. For, e.g., an isotropic
Heisenberg model for = 1 andD = 0, one obtains id =3 (& = 1)

d d*k

5= a0 =@~ k)S:_ Sy
A (2.11)
Esi = iZi/ dk (J(k) — J(q — k))SE , §¢
dr 9 (2m)3 q a-k"k
WheresgE = S; +iS) are the ladder spin operators aiy) = —Jo + Jig? + -- - is the

Fourier transform of the exchange coupling expanded for small mometieom (2.11) one
obtains the mode coupling equations for correlation functions on a coarse grained timescale by
a projection on slow variables like the order parameter or the energy density. For the systems
discussed here the quantities of main interest are the Kubo relaxation functions which are
defined by (Thomat al 1991)

¢ (q.1) = ilim / T dre (x50, X407 (2.12)

wherexg(t) = S;1)/V/x*(q) are normalized spin variables and t&(q) are the static
spin—spin correlation functions. The equation of motiong®?f then reads

%wﬂ(q, ) = (0" (@¢" P (q, 1) [ 4T (q.1 — 9" (q. 1) (2.13)
0

where w*f(q) = —([X5(0), qu(O)]) is the frequency matrix which contains dithear
contributions to spin dynamics and relaxation. The nonlinearities are captured by the memory
kernell'*#(q, t) which depends on higher correlation functions between the spin variables. If,
e.g., only two-mode processes are retaiiée (¢, 1) becomes bilinear in*# (q, t). With this
approximation mode coupling theory for the isotropic ferromagnet is consistent with dynamic
scaling in the critical regime, where= (5 +17)/2 is obtained ind = 3, a result which is

at variance with (2.5). In order to reproduce (2.5) higher order and vertex corrections must
be taken into account (Frey and Schwabl 1994). For the isotropic antiferromagnet (Kawasaki
1976) and the planar ferromagnet (Thoetaal 1991) dynamic scaling is obtained with the
correct valuez = 3/2 of the dynamic exponent within the two-mode approximation for the
memory kernel ind = 3. If (2.13) is Fourier transformed into frequency space, a set of
self-consistent integral equations f#(q, w) is obtained. For many practical purposes the
frequency dependence Bf-#(q, w) is weak so that these functions can be replaced by their
value atw = 0. In this case the Kubo relaxation functions (line shapes) become Lorentzian in
o (Thomaet al 1991, Frey and Schwabl 1994).
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Mode coupling theory has also been applieddin= 3 to ferromagnets with dipolar
interactions (Frey and Schwabl 1994), which due to their long ranged nature are expected to
dominate the critical behaviour. Furthermore, dipolar forces are anisotropic and therefore the
magnetization in ferromagnets is no longer a conserved quantity. If exchange interactions are
also present, a new length scalg 3 emerges which keeps the longitudinal component of
the static susceptibility finite &., whereas the transverse component diverges. Accordingly,
dynamic scaling differs for longitudinal and transverse modes and the scaling functions depend
on the dimensionless ratig|/gp. For longitudinal modesz; = 0O in the dipolar regime,

i.e., the characteristic frequency remaifimite at 7 = T, for ¢ — 0. For transverse modes,

z1 = 2, whichis the classical value for purely relaxational dynamics without conservation laws
(model A of Hohenberg and Halperin (1977)). Within the same approximations one obtains
z = 5/2 for the usual short-ranged exchange interactions. Notezthats/2 is consistent

with (2.5) ind = 3 within the Ornstein—Zernicke approximation#£ 0). The crossover from
isotropic ¢ = 5/2) todipolar ¢, = 0 andz, = 2) critical behaviour, is entirely captured by the
scaling functions of the characteristic frequencies and can be described within the Lorentzian
approximation for the Kubo relaxation functions.

2.3. Magnetic chains in external fields: solitons

Thereis awide body of literature on the theory of magnetic systethsiri spatial dimensions.

We will therefore only focus on a particularly interesting set of questions which arises when one
looks at ferromagnetic Heisenberg chains with a planar anisotropy in a symmetry breaking field.
An effective continuum model for this problem turns out to be given by the classical sine—
Gordon model (Mikeska 1978, Allroth and Mikeska 1981a,b). The elementary excitations
consist of plane (spin) waves and solitons which in their simplest form may be visualized as
localized+27 twists of spins along the chain. In the different components of the dynamic
structure factor these excitations appear as central soliton peaks. A single spin-wave peak in
$5W(q, w) is predicted to be a simplefunction

kgT
N4 _
wherem is the soliton rest mass. With spin-wave interactiSpg;, ) becomes Lorentzian,
1 r
8w —wy) > (2.15)

;(a)—a)q)2+f‘2'

The central soliton peak has a Gaussian line shape

kgT m? + ¢? 32 m M2 4mae?
g, w)=|1— 1-— exp| ——— | fu 2.16
o (@) |: 2m |: 12m? | |cqmm?| kT " exp kpT c?q? Jal@) (2.16)

wheren is the soliton density, which increases as@x@n/kpT), and f, (¢) and f, (¢) differ.

There should be no single spin-wave peal§,in(g, w) but rather a two-spin-wave signal with
step-like and square-root singularities. In the sine—Gordon description the spins are confined
to thexy plane so that no predictions are made alfuly, w). The general picture given by

the sine—Gordon theory has been confirmed by spin dynamics simulations¢af ahain in

a magnetic field (Gerling and Landau 1990), but the quantitative agreement with the theory
remains unsatisfactory.

2.4. Two-dimensional easy plane magnets anditienodel

Thed = 2 XY ferromagnet (anisotropic Heisenberg model) is one of the ‘special’ models
of magnetism. It undergoes an unusual phase transition to a state with bound, topological
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excitations (vortex pairs) but no long range order (Kosterlitz and Thouless 1973). The (three-
componentX' Y model may be viewed as a special case of the anisotropic Heisenberg model in
which the coupling between thecomponents of spins vanishes ((1.1) with= 0, D = 0). It

has static properties which are similar to those of the ‘plane rotator’ model, in which the spins
have only two components. The static behaviour of both models has been studied by simulation
(see, e.g., Tobochnik and Chester 1979, Gerling and Landau 1984, Gupta and Baillie 1992,
Janke and Nather 1993) and found to be consistent with the predictions of the Kosterlitz—
Thouless theory. For example, the susceptibility shows an essential singularity instead of a
power law divergence, and vortex pairs unbind’a.

The XY model has true dynamics which can be determined by integrating the equations
of motion for each spin whereas the ‘plane rotator’ model has only stochastic, i.e. relaxational,
time dependence which has been examined by Monte Carlo simulation (Gupta and Baillie
1992). Note thatlifferentdynamic exponents are expected for stochastic and for true dynamics
(Hohenberg and Halperin 1977}, is conserved during the time evolution; so that the out-
of-plane componen§** and in-plane componet* = §*Y can be separated. The dynamics
of d = 2 systems with easy-plane asymmetry were first analysed by Villain (1974, 1975) and
by Moussa and Villain (1976)5** (¢, w) was found to have & function spin-wave peak at
low temperature and nedk r a spin-wave peak of the form

1

S (g, ) ~ —————.
(g, ) @ — oL

(2.17)

Herew, is the position of the spin-wave peak amds the exponent describing the decay of
the static spin—spin correlation functiom £ 1/4 atTx7). At high temperatures, Moussa and
Villain (1976) predict thats** (¢, w) is given by the sum of two non-divergent terms.

In spatial dimensiond < 2 the description of the static behaviour of Heisenberg-like
systems is no longer captured by the Ginzburg—Landau Hamiltonian given by (2.2). Instead,
one can use an adapted version of the well known nonlinear sigma model, which in the case
of a planar ferromagnet has been considered in the form (Nelson and Fisher 1977)

H = %/ddx[(me)z +(Vmy)2 +m?] (2.18)
with the constraint:? + m% = 1, neglecting coupling betweem, and the other components
of m. They obtained the transverse spin—spin correlation function,

C™(r,t) ~ 1/r" W, (ct/r) (2.19)
v, (y) = { ! _ y=1
G+Vy2-D7"  y=1

wherec is the spin-wave velocity andis the time. The Fourier transform of (2.19) is

3141(3) (2.20)
q=" cq

where the scaling functior behaves like

$*(q, w) ~

Yy ~ ——=1— 2.21
» =2 (2.21)

around the spin-wave peak, and
(g, @) ~ "3 > w,. (2.22)

They also predicted that the dynamic critical exponent, which should-bei/2 ford > 2
(Hohenberg and Halperin 1977), is= 1 for d < 2. Note that the value = 1 and a
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linear dispersion relation are also implicit in the argument of the scaling fundtiom(2.20).
Finally, both theories predict & function spin-wave peak i§%*(¢q, ), atw = cq. More
recently, Menezest al (1993) performed a low temperature calculation which includes the
out-of-plane fluctuations and found a similar spin-wave peak as Nelson and Fisher,

1

$¥(q, w) ~ NP 2.23
(q.0)~n I (2.23)
plus a logarithmically divergent central peak
log(1/a
57 (g, @) ~ 222 (2.24)

where® = w/(cq). Of course, a central peak at low temperature can also be caused by other
mechanisms, e.g. vortex pairs diffusing like a dilute pair of solitons (Pezeakl992). Very
narrow peaks are predicted f8r, (¢, w) (Menezest al 1992).

For a phase transition of Kosterlitz—Thouless type, the spin stiffness should drop
discontinuously to zero &7, i.e. the spin-wave peak is predicted to disappear (Nelson and
Fisher 1977, Nelson and Kosterlitz 1977). Abdler, vortex—antivortex pairs unbind, and
their diffusion leads to a strong central pealSify, ). Mertenset al (1987, 1988) calculated
S(g, w) aboveTkr, assuming an ideal dilute gas of unbound vortices moving in the presence
of renormalized spin waves and screened by the remaining vortex—antivortex pairs. They find
a Lorentzian central peak fof* (¢, w),

)/3€2
S (g, w) ~ 2.25
R P R (.29
and a Gaussian central peak K5 (¢, ),
- 2
§(g, w) ~ exp{ - <ﬂ> } (2.26)
q uq

wherey = (/7 /2)it/&, it is the rms vortex velocity anal, ~ (2£)~? the free vortex density.

Early analytical work on vortex dynamics in 2D Heisenberg ferromagnets with a planar
anisotropy (see (1.1) with @ » < 1 andD = 0) focused on vortex motion in a diluted vortex
gas forT > Txr (Huber 1978). The vortex contribution to the in-plane spin autocorrelation
function shows a vanishing decay ratefat> Tx7 due to the disappearance of free vortices.
However, the faster decay of multiple spin-wave contribution obscures the critical slowing
down. In the out-of-plane component, vortices lead to a narrow central peak on top of a
broad spin-wave background. The quantitative picture of the critical dynamics is expected
to hold for allg values outside the hydrodynamic regime. More recently, additional vortex
dynamics calculations have been performed for easy-plane Heisenberg ferromagnets (Mertens
et al 1988, 1989, Gouwdaet al 1989) and their antiferromagnetic counterpart®liél et al
1991a, b). AbovE@kr, S, (g, w) is given by a squared Lorentzian, wheréagq, ») displays
a Gaussian shape where the line widths depend on the root-mean-square vortex velocity. Note
that for both ferro- and antiferromagnets planar vortices should only be stable for values
abovel. the vortices develop an out-of-plane component with a bell-shape distribution centred
at the vortex core.

3. Experimental background

Experimental investigation of dynamics in magnetic systems can be effectively studied using
inelastic neutron scattering techniques. These experiments measure the dynamic structure
factor, S(¢, ), the properties of which yield information about elementary excitations and
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dynamic critical behaviour. These experiments are more difficult than elastic scattering studies
because of the greatly reduced signal to noise ratio. Typically critical properties are examined
by measuring various intensities and lineshapes as a function of the reduced distance from
the critical point7,. In the case of dynamic critical behaviour this means measuring the

q dependence of the dynamic respons@afor ¢ — 0. This means, of course, that the
critical temperature must be accurately known and the dynamic structure factor for small
g and the resolution function must be accurately determined. Another difficulty which is
faced in carrying out experimental studies is that of finding physical systems which can be
well approximated by the simple magnetic models discussed above. Fortunately, there are
several well studied systems which can be described by simple Hamiltonians of the kind in
equation (1.1). Examplesinclude Csh#&s a prototype of a 1D soliton bearing system, GeCl

GIC as an example of a 2BY system, and EuS and RbM#&s examples of an isotropic 3D
Heisenberg ferromagnet and antiferromagnet respectively. Lastly, anisotropic 3D systems are
well represented by MnFand Fel. Some of these experimental results will be described later.

4. Spin dynamics methods

4.1. Equations of motion

For models with continuous degrees of freedom, real equations of motion,

ds; oH

= S =—8 x H, 4.1

dr 9 X et (4-1)
describe the dynamics whetH,; is an ‘effective’ interaction field. For the isotropic
Heisenberg ferromagndi,;; = —J ), S; and the time dependence of each sgsip(),

can be determined from integration of these equations (Gerling and Landau 1984). These
coupled equations of motion can be viewed as describing the precession of each spin about an
effective interaction field; the complexity arises from the fact that, since all spins are moving,
the effective field is not static but rather itself constantly changing direction and magnitude.

4.2. Time integration algorithms

A number of algorithms are available for the integrations of the coupled equations of motion
which were derived in the previous sub-section. The simplest approach is to simply expand
about the current spin value using the time-steps the expansion variable;

By

S+ A) = S¥(r) + ASY () + %AZS,‘?‘(t) + %M OGRS (4.2)

where ther denotes the spin component. The ‘new’ estimate may be made by simply evaluating
as many terms as possible in the sum, although this procedure must obviously be truncated at
some point. Of course, values of the various time derivatives must be obtained and, except
for S which can be obtained directly from (1.1), these calculations may be somewhat time
consuming. Typical values ok which deliver reliable results to a reasonable maximum
integration time,,,,, are in the range oA = 0.005. If the equation is truncated at the point
shown in (4.3), the errors will be of ordex*. A very simple improvement can be made by
implementing a ‘leapfrog’ procedure in which one also expands usifAgas the expansion
variable and subtracts the resulting equation from (4.2) to yield

. 2 o
S,.“(HA)=s;“(z—A)+2AS§‘(t)+§A3 S, () +---. (4.3)
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The error in this integration i€ (A®) and allows not only larger values & to be used

but also allows us to extend the maximum integration time,to ~ 100/~!. Several
standard numerical methods can also be applied. One excellent approach is to use a predictor—
corrector method; fourth-order predictor—corrector methods have proven to be quite effective.
An example is the explicit four-step Adams—Bashforth method (Buedeh1981)
S¥@+A)=S(r) + 2—14A[55S§’(t) —598%(t — A) + 3787 (t — 2A) — 957 (r — 3A)]  (4.4)
followed by an implicit Adams—Moulton corrector step

ST+ A)=S"(1)+ 2—14A[9Sf‘(t + A) +195%(¢) — 5857 (r — A) + S¥(r — 2A)] (4.5)

a combination which also has a local truncation errandfand which has proven to be quite
successful. The first application of (4.4) obviously requires that at least three time steps have
already been taken; these can initially be provided using the fourth-order Runge—Kutta method,
starting with the initial state. Of course, this predictor—corrector method requires that the spin
configuration at four time steps must be kept in memory. Note that the conservation laws
discussed earlier will only be observed within the accuracy set by the truncation error of the
method. In practice, this limits the time step to typicaly= 0.01/J in d = 3 (Chen and
Landau 1994) for the isotropic moddb(= 0), wheret,,,, < 200/J. The same method was
used ind = 2; with a time stepA = 0.025/J (Costaet al 1997),t,,.» < 60/J, whereas with

A =0.01/J, t,,,, = 400/J (Evertz and Landau 1996) could be achieved.

For a typical spin dynamics study the major part of the CPU time needed is consumed by
the numerical time integration. The biggest possible time step is thus most desirable; however,
‘standard’ methods impose a severe restriction on the size fofr which the conservation
laws of the dynamics are obeyed. Itis evident from (4.1) tHatfor each lattice sité and the
total energy are conserved. Symmetries of the Hamiltonian impose additional conservation
laws, so, e.g. foD = 0 andA = 1 (isotropic Heisenberg model) the magnetizatianis
conserved. For an anisotropic Heisenberg model.g,1 or D # 0, only thez component
m, of the magnetization is conserved. Conservation of spin length and energy is particularly
crucial, and it would therefore also be desirable to devise an algorithm which conserves these
two quantities exactly. Thus, a new, large time step integration procedure, which is based
on Trotter—Suzuki decompositions of exponential operators and conserves both spin length
and energyexactlyfor D = 0, has been devised. The motion of a spin, given by (4.1), may
be visualized as a precession of the sgjnaround an effective fieldd.;; which is itself
time dependent. For the simple caBe= 0, and arbitrary values of, the lattice can be
decomposed into two sublattices such that a spin on one sublattice performs a precession in a
local field H, s of neighbour spins which ar@l located on the other sublattice. First, each
spin on a sublattice is rotated about its local fiefg} s by an angler = | H,¢¢|A, guaranteeing
conservation of the spin length to within machine accuracy, and the process is then carried out
for spins on the other sublattice. The sublattice equations of motion reduce to a linear system
of differential equations if the spins on the other sublattice are kept fixed, so an alternating
update scheme is used. Note, that each sublattice rotation is performed with the current values
of the spins on the other sublattice, so that only a single copy of the spin configuration is
kept in memory at any time. However, the magnetization will not be conserved during the
above rotation operations; moreover, the two alternating rotation operations do not commute,
so that a closer examination of the sublattice decomposition of the spin rotation is required.
The cross products in the equations of motion can expressed by méatrazedB which are
the generators of the rotation of the spin configuratéhn on sublattice4 at fixed S;z and
of the spin configuratiors;s on sublatticeB at fixed S; 4, respectively. The update of the
configuration can then be expressed by an exponential (matrix) operator by

Si(t+A) =eA®AG. (1), (4.6)
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Although the exponential operator has no simple explicit form, because the rotation axis for
each spin depends on the configuration itself and is therefore not kapviori, the operators

€2 and & do have a simple explicit form. The alternating update amounts to the replacement
of eA*B)A py ehA B4 which is only correct up to terms of the ord&f (Suzuki and Umeno
1993). The magnetization will thus only be conserved up to terms of the ardaut further
improvement is possible by employing higher order Suzuki—Trotter decompositions of the
exponential to decrease the local truncation error, e.g. to second order:

e(A+B)A — &A/Z eBA eQA/Z + O(AB) (47)

which is equivalent to the midpoint integration method applied to (4.6) and to fourth order:
5

ghrIn _ [T erhs/2gnBagns/2 4 (A% (4.8)

i=1
with the parameters; = p, = ps = ps = p = 1/(4—4%Y3), andp; = 1—4p. The additional
computational effort invested in the evaluation of (4.8) can be compensated by using larger
time steps. (Note that the above decompositions maintain time reversal symmetry.) More
distant neighbour two-spin interactions can be included if the lattice is decomposed into more
sublattices, and the method can be generalized to thelzas® (Krechet al 1998).

A quantitative comparison of these integration methods was made for the simple cubic
Heisenberg model with = 1 andL = 10. The same initial configurations were chosen by
Monte Carlo simulation a" = 0.87,, whereT, is the critical temperature of the isotropic
model (D = 0). The equations of motion were integrated,tg. = 800/J with A = 0.01/J
for the predictor—corrector method in all cases. Bore= 0 the energy per spia(r) for the
predictor—corrector method increases linearly with time whereas the decomposition methods
both yielde(r) = const. The predictor—corrector method consemés exactly, whereas
the second-order decomposition with= 0.04/J has fluctuations of:(¢) on all time scales,
includingt > t,,,,; the fourth-order decomposition method with= 0.2/J gives remarkably
good magnetization conservation despite the large time step. In order to achieve the same
overall accuracy of the magnetization conservation with the second-order decomposition a
time stepA < 0.02/J is necessary. Both decomposition methods yield almost a net tenfold
speedup over the predictor—corrector method.

For the strongly anisotropic case with= J, the decomposition scheme must be modified
because the spin rotation axis depends on the spin value at the futurettinjeafid an iterative
solution is required. Even so, a 30% gain in speed remains. All three methods show a linear
change in energy with time; a direct comparison of all three methods is displayed in figure 1.
The overall accuracy of the magnetization conservation appears to be indepenfefdrof
both decomposition methods. Considering both speed and overall energy conservation, the
second-order decomposition has some advantages over the predictor—corrector method; if the
emphasis is on energy conservation alone, the fourth-order method is best but only slightly
faster. A direct comparison ¢f(g, w) for the isotropic Heisenberg ferromagnet showed very
good agreement between the results for the predictor—corrector method wit@.01/J and
for the second-order decomposition method with= 0.04/J.

The great advantage of the predictor—corrector method is its versatility and its ability to
conserve the magnetization exactly. Isotropic and anisotropic spin systems can be treated
within the same numerical approach. The division of the lattice into sublattices, which is
the basis for the decomposition method, depends on the range of the interactions, so that
this approach is less general. Single-ion anisotropies leave the performance of the predictor—
corrector method almost unaffected, whereas the decomposition method suffers from a drastic
reduction in speed. The greatest advantage of the decomposition method is its capability
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Figure 1. Spin dynamics data for the = 10 simple cubic Heisenberg model with= J. For the
predictor—corrector methaofl = 0.01/J, for the second-order decomposition metioe: 0.04/J
and for the fourth-order decomposition methtad= 0.2/J. (a) time dependence of the internal
energy; b) time dependence of thecomponent of the magnetization. (From Krezttal 1998).

for handling large time steps and the exact conservation of spin length. In the absence of
anisotropies it also conserves the energy exactly and maintains reversibility. For anisotropic
Hamiltonians, energy conservation and reversibility can be obtained to a high accuracy using
iterative schemes; but exact magnetization conservation is lost (figure 1).

4.3. Time-displaced correlation functions and Fourier transforms

The space-displaced, time-displaced spin correlation function and its space—time Fourier
transform are fundamental in the study of critical spin dynamics (Lovesey 1984). The
correlation function is defined, with= x, y or z, as

Cr(r — 7', 1) = (SE()S)(0)1) — (SF(1))(S5(0)) (4.9)
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where(...) denotes the ensemble average and the second term on the right-hand side should
be constant, independent of position and time. The dynamic structure factor is given by

o0
Sk(q, w) = 1 Z garr= / e ck(r — v, 1) dr (4.10)
2 7 —x%
Sk(g, w) is an experimental observable, for momentum trangferd frequencw, in neutron
scattering experiments. In practice, however, the time integration can only be carried out to
some finite time cutoff which can introduce many oscillations into the result of the Fourier
transform, (4.10). These oscillations, however, can be smoothed out by convoluting the spin
correlation function with a resolution function in frequency (Gerling and Landau 1984) which
plays the same role as does finite collimation in an experiment, i.e.,

_ 1 P
= L e |

—leutoff

Teur of

dUCK(F — 1) e 200 g (4.11)

wheres,, is a parameter determining the resolution in frequency and needs to be chosen properly
such that effects of the cutoff in the evolution time can be neglected.

4.4. Methods of analysis

4.4.1. Dynamic scaling. The dynamic structure factor depends on the correlation length
and may be written

5¥(q, 0) = (27 /w,) S* () f(@/Wm, q, &) (4.12)

wherew,, (q, £) is a ‘characteristic frequencyS* (¢) = % [fooo S¥(g, w)dw and f is a shape
function satisfying the normalization condition (Halperin and Hohenberg 1967, Fetrll
1967). The characteristic frequenoy, is a median frequency determined by the constraint

f ' S(q, w)dw = %/ S(g, w)dw. (4.13)
Dynamic scaling theory assumes thgi(q, &) is a homogeneous function gfandé, i.e.

wm = q°2(q§) (4.14)
wherez is the dynamic critical exponent. Therefcﬁ?(q, ) simplifies to

$*(q, w) = 21 /w,) S (Q) f (@] o0, g5) (4.15)

where the functiory depends only on the product @§ but not ong andé separately.

4.4.2. Dynamic finite size scaling. Two major practical limitations on the computer
simulation of dynamic behaviour are finite evolution time and finite system size. The range
of ¢ for which data can be taken is limited, because of fifit¢éo values typically larger than

those which is accessible to experiment. The method of analysis used in experiment is thus
not effective here; instead the finite-size effect can be used directly to extract the dynamic
critical exponent as has been done for statics (Landau 1990, Chen and Landau 1994). The
divergence of the correlation lengthin the critical region is limited by the linear dimension

of the system/L. Replacingt by L in the previous equations, and including the resolution
function parametes,,, we find

N
/ Si(q,w)gzészw) (4.16)

— Wy



Magnetic model system spin dynamics simulations R191
with S5 (g) = [, S¢(g. w)dw/27 and

$1(q, ) = 0 157(@) F(@/on, gL, 80/ op) (4.17)
whereF is a function which depends oft We can then expres¥ (7, ») in a scaling form,

Sk (G, w)
Sk@)

wheregG is another unknown function. The median frequedgyshould then scale as

= G(wL? gL, 8,L%) (4.18)

om = L*Q(gL, 8,L%) (4.19)

where the explicit form for functio is also unknown. The different quantitie$ (7, ),

S,’i (¢) andw,,, can be measured by simulations and used to test dynamic scaling and estimate
the dynamic critical exponent The difficulty in choosing a shape function is avoided since
the characteristic frequency can be estimated without that knowledge.

Itis generally preferable to use (4.19), rather than (4.18), to determine the dynamic critical
exponent; due to the statistical fluctuations &j (7, »); these can be more or less averaged
out in determiningv,, by the integration and the normalization. Because the explicit form for
functionQ in (4.19) is generally unknown,may be extracted by self-consistent iterations. If
the two arguments of the functian are held fixed, then

B o L7 (4.20)

For the first argument af2, the product ofy and L is fixed, since we are interested in only
thoseg values determined by the periodic boundary conditions, i.e.

q=n,2r/L) ng=012...,L. (4.22)
For the second argument, we choose
3, = a(40/L)* (4.22)

where, withz,,,, = 100/J, a = 0.025, in units of/, was chosen empirically to provide a
good compromise between effectively reducing the ‘cutoff’ oscillations and not excessively
broadening the structure of ti$€g, ). An initial valuez© is picked and used to determine
8, by (4.22) for differentL. ThenS¥ (g, w) anda,, are calculated for different combinations
of L andg with n,,. A new estimatez¥, can then be extracted from the simple relation (4.20),
which is a special case of (4.19) with the functi@rkept constant.

This process can be further simplified if the time integration can be carried out to long
enough time that no resolution function is necessary. Then, (4.18) and (4.19) simplify to

Sk (G, w) i
—_—— = G LL, L 4-23
5@ (wL*,qL) (4.23)
and
@n = LT*QqL). (4.24)

Thus, z is given by the slope of a graph of lag, against logL at fixed value ofgL.
Alternatively, (4.23) implies that for correctly choserand for a fixed value of L, graphs
of S¥(q, w)/{L*S¥(q)} againstw L* should all fall onto the same curve for different lattice
sizes. Both procedures will only be valid for sufficiently large lattice size
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5. Results and comparison with theory and experiment

5.1. One-dimensional XY model in a symmetry breaking field

Arguably the most famous set of experimental measurements of a ‘1D’ magnetic system are
those shown in figure 2 for CsNikKjems and Steiner 1978). There were some disagreements
between theoretical predictions and the experimental results, but whether was unclear whether
this was a deficiency of the theory or a deficiency of the model used. From the results obtained
from the spin dynamics simulations, shown in figure 3, it is clear that there is good overall
qualitative agreement between the results for the ferromagkiétichain in a transverse field

and the theoretical mapping onto the sine—Gordon equation. There are quantitative differences
in peak half-widths and intensities, however, and these limit to some extent the agreement
that can be expected between the analytic theory and experiment. The experimental data had
limited resolution and the different polarizations could not be measured directly. We note that
27 solitons could be observed directly in the simulations. Spin dynamics simulations for the
corresponding antiferromagneftc’ chain (Staudingegt al 1985, Gerling and Landau 1992)
showed a more complicated dynamic structure factor than for the ferromagnet. Even more
intriguing was the discovery of multiple kinds of -soliton’ including one type that had not

even been predicted theoretically.

-1.0 -05 00 0.5 10
ENERGYTRANSFER (meV)

Figure 2. Inelastic neutron scattering data for CshliR a transverse field. The open circles are
the data with the background subtracted; the solid curve a is fit to the data using Lorentzian spin
wave peaks and a Gaussian central peak. (From Kjems and Steiner 1978.)

5.2. Two-dimensional easy-plane magnets and the XY model

Inelastic neutron scattering experiments have been carried out on several different layered
materials which can generally be described as anisotropic 2D Heisenberg models, and these
generally prove to be the closest physical realizations of Xtfemodel. These include
Rb,CrCl, (Hutchingset al 1986, Bramwellet al 1988) and BaNi(PQy), (Regnaultet al

1983). The highest resolution experimental studies have been carried out on stage 2 CoCl
intercalated graphite (Wiesl@t al 1994) and find four temperature regimes with different
behaviour. There are indications of a Kosterlitz—Thouless transition at a temperBtyre
though some properties disagree with KT predictions. For T <'T,,’, they observe spin-

wave peaks, but it is not clear whether a central peak is present. (In this region the long range
part of the scattering function shows true 2D character, whereds fo'7T;’ 3D correlations
develop.) AboveT,’, the in-plane scattering function shows the expected central peak, and
the out-of-plane function exhibits damped spin waves. (In figure 10 we will show intensity
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Sy (C[,cu)

S, (q.w)

Figure 3. Spin dynamics data fo§(q, w) for a 1D XY model: @) T = 0.4J/k, h = 0.1J,
q = /8. The dashed lines are fits of aresolution broadened Gaussian central peak and a Lorentzian
spin-wave peak.b) 7 = 0.2/ /k, h = 0.1/, ¢ = =/8. The solid curve is the prediction from the

sine—Gordon model; the dashed line uses the dispersion relation from the harmonic approximation.
(From Gerling and Landau 1990.)

data from inelastic neutron scattering and make a direct comparison with both theory and
simulation.) Although the resolution is not as good as for the simulations, one can see the
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development of overdamped spin waves just ab@ykdnd the presence of both a spin-wave
peak and a central peak well bel@y. We should perhaps note here that there is experimental
evidence that both defects as well as residual 3D coupling limit the ‘effective size’ of the 2D
XY-like system to of the order of 100 lattice spacings. Further discussion and an extensive
listing of relevant literature can be found elsewhere (Wiesied 1994).

Spin dynamics simulations for easy-plane Heisenberg magnets {0< 1, D = O,
and H = 0) ind = 2 have examined the contribution of vortices, spin waves and their
interaction to the dynamic structure factor although much of this work is of modest quality.
For T > Txr they have served as the major test of the phenomenological ideal vortex gas
picture of the dynamics id = 2 magnets (Mertenst al 1987, 1988, 1989). Kawabata al
(1986) and Landau and Gerling (1992) simulated XH& model ¢ = 0) with L < 204 and
found both spin-wave peaks and a central peak. The resolution was too limited, however, to
allow quantitative comparison with theory or to estimate the dynamic exponent. Simulations
show thatS,, (g, w) andS,.(q, w) behave differently.S,, (q, ) is globally sensitive to the
presence of vortices (Merters al 1987, 1988, 1989). In real space—time each vortex which
passes aline connecting the orighp @) and ¢, ) becomes visible as a ‘kink’ i, (r, 1), i.e.,
S (r, t) changesits sign whemn (¢) passes through a vortex core. According to this picture the
shape ofS, (g, w) is given by a squared Lorentzian, (2.25), in which the Kosterlitz—Thouless
correlation lengtlé shows up as the dominant length scale. This picture has been supported
by spin dynamics simulations for = 0 (XY model) (Mertenset al 1987, 1988); the line
width and the integrated intensity of the central peak agree well with the phenomenological
theory. For wave vectorg > &£~ the spin-wave contribution to the intensity exceeds the
vortex contribution, which decays gs3 in this regime (Mertengt al 1989). The vortex
gas theory only works on length scales much larger than the vortex core radis that
g < r;lisrequired in (2.25) and therefore theange in which the vortex gas theory yields
an adequate description shrinks. This has also been confirmed by spin dynamics simulations
(Mertenset al 1989). In the limith. — 1 the vortex gas description finally becomes invalid for
anygq. In contrast,S,,(q, ) is locally sensitive to the presence of vortices. If one considers
only incoherent scattering from independent vortices, the vortex gas theory yields a Gaussian
central peak inS,; (g, w) at high temperature, see (2.26). Spin dynamics simulations show
that the linewidth is linear irg; however, from vortex gas theot§,(q, w) = 0 fora = 0
(XY model) in clear disagreement with the simulations which still give strong evidence for
a distinct central peak if,, (g, w). More recent simulations show that the central peak only
appears foi. > A, (Costa and Costa 1996), although this conclusion has been questioned
(Gouwvea and Wysin 1997). Strong fluctuations in the number of vortices as a function of time
suggest that vortex—anti-vortex pair creation/annihilation may be responsible for the central
peak. The phenomenological vortex gas picture can thus only be used as a first approximation
to out-of-plane correlations whenis large enough.

To further determine the role which vortices playlia= 2 magnets, detailed simulations of
the vortex dynamics have been performed (Wysin 1990, Wsts#th1988, Gouaet al 1989)
with spin waves suppressed by the introduction of Landau—Gilbert damping in the equations
of motion. As initial configurations single vortices or vortex—anti-vortex pairs were chosen on
different lattices and the simulations performed at constant energy and at fixed temperature,
but averages were taken over only three initial configurations. Planar vortices are stable for
anisotropies. < A. and develop out-of-plane components onlyXas .. Likewise, an out-
of-plane vortex relaxes to an in-plane vortex fox A. and is stable only fox > .. More
detailed simulations find that. ~ 0.71 for a square lattice (Costa and Costa 1996). A planar
vortex pair is stable if the initial separation between the vortices is large enough (typically
half the linear lattice size) and < 0.7 (square lattice). For small initial separations out-of-
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plane components develop from an initial in-plane configuration. AFar 0.8 out-of-plane
components even develop for a large initial separation; the vortex and the anti-vortex move
towards one another along spiral trajectories and may finally annihilate each other. These
simulations indicate that correlations in the out-of-plane spin motions emerge from moving
planar vortices rather than exclusively from static vortices with out-of-plane components.
According to this modified vortex pictur& (g, ») still shows the Gaussian central peak in
(2.26). The line width is linear iy as in (2.26) which is supported by the simulation data
(T > Txr) (Gouveaet al 1989). The integrated intensity agrees with the Monte Carlo data
to within the order of magnitude. Whether the line shape is really Gaussian, however, cannot
be decided on the basis of the numerical data. More complete simulations have now been
performed with much higher statistics for= 0 (XY model) (Evertz and Landau 1996) which
will be described later in this section.

The motion of vortex pairs has also been studied for easy-plane antiferromagoks (V
et al 1991a), where the vortices in non-stationary vortex pairs move towards one another
on straight rather than spiral trajectories. The reason is that the spins in the out-of-plane
component of a vortex are antialigned in an antiferromagnet and do therefore not produce
an effective magnetic field between the vortices. As in the case of easy-plane ferromagnets
the vortices are almost in plane far < A., wherei. >~ 0.71 for a square lattice. The
dynamic correlations in easy-plane antiferromagnets are somewhat more complicated than in
their ferromagnetic counterpart. This is on one hand due to the presence of two distinct spin-
wave branches, namely an in-plane (optical) branch and an out-of-plane (acoustic) branch. On
the other hand spins in vortices are antialigned rather than aligned so thatfay the static
vortex structure{ > Txr) leads to a central peak @t= (, ) in S,,(q, w), just where the
dispersion of the optical branch has its zero. Spin-wave contributiois g, »), however,
vanish completely at thig value. Motion of free vortices folf' > Trg produces a central
peak atg = (0, 0) in S,;(q, ) apart from a distinct spin wave peak which remains visible
even abovdxr. Fori > A, out-of-plane vortices with antiferromagnetic structure are stable
(VOlkel et al 1991a) so that vortex peaks are expected to appegs=at0, 0) andqg = (r, 7)
inbothS,, andS,.. Forx = 0 andT > Ty the simulation data for the central peakSin are
well described by a squared Lorentzian shape function (see (2.2p)fo1(r, 7) — q). The
¢ dependence of the line width and the integrated intensity are in good agreement with vortex
theory in the temperature ran@fer < T < 1.25Txr. Above 125 Tk 7 diffusive spin motion
begins to dominate. As in the previous cases the predicted Gaussian line shape of the central
peak inS,,, see (2.26), cannot be uniquely verified, because the spin-wave peak dominates
for most of theg values. However, for smadl the simulation yields a line width which is
consistent with the analytic prediction @lkel et al 1991b). Spin dynamics simulations of
a 2D XY model in a transverse magnetic field (Géaet al 1990) suggest thaf,, is more
sensitive to domain walls whered$, and S,, are to vortices. Spin dynamics simulations
have also been used to investigate the isotropic antiferromagnetX) ind = 2 near the
antiferromagnetic Bragg poift = (r, ) (Wysin 1990). From the isotropy of the model it
is evident that all components of the dynamic structure factor are equivalent. This symmetry
also implies tha(q, w) is well described by a product of symmetrically located Lorentzians
for g values close tor, 7). The simulation data agree with this peculiar line shape.

The most complete simulations of an easy-plane ferromagnet ake=fod (XY model)
by Evertz and Landau (1996) who studiedx L lattices with periodic boundary conditions
for 16 < L < 192, both below and abovE;r. Equilibrium configurations were created at
each temperature using a hybrid Monte Carlo method which combined cluster updates of the
x andy spin components (using the Wolff embedding method) (Swendsah1992) with
vectorized Metropolis and overrelaxation spin reorientations (Landau 1992) to produce rapid
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decorrelation of successive configurations. Between 500 and 1200 equilibrium configurations
were generated for each lattice size and temperature, and the error bars in the figures represent
statistical errors for averages over these configurations. The time integration was done using
a vectorized fourth-order predictor—corrector method with= 0.01/J and a maximum
integration time of,,,,, = 400/J. Toreduce memory and CPU time, only momepta (g, 0)

and (Q ¢) were calculated, with determined by the periodic boundary conditions (see (4.21)),
and data from these two spatially equivalent directions were averaged together to enhance the
statistical accuracy. Fast Fourier transforms were used to calculate correlation functions. For
T < Txr the XY modelis critical and the dynamic exponergan be extracted using dynamic

finite size scaling theory. For this analysis no resolution function was needed to smoothen the
effects of finiter,,,. because of the long integration times.

The results of the initial analysis prompted additional static Monte Carlo studies which
provided an improved estimate @%; = 0.700(5); additional (but less extensive) spin
dynamics simulations were then performed there. Figure 4 shows the temperature dependence
of S(¢g, w) as a function ofw, for L = 192 and fixed, small momentug = 7 /48, i.e.
ng = 2 in (4.21). S..(q, w) exhibits a very strong and moderately sharp spin-wave peak
at temperature¥ < Txr. The position of the peak moves towards lower frequency as the
temperature increases, and the peak broadens slightly. Just above the tranditien) 8225
there is still both a strong spin-wave peak and a sizable central peak, but at higher temperature,
the spin-wave peak disappears (for this smakhnd only a large central peak remains. Note
that from KT theory one would expect complete disappearance of a spin-wave peak at all
T > Txr. There is additional structure " away from the spin-wave peak at temperatures
uptoTgr.

S$%(g, ) has structure with two orders of magnitude less intensity than the in-plane
component. There is a very sharp spin-wave peakfet Txr, whose width is limited by
the w resolution, with noticeable finite time cutoff induced oscillations. The oscillations can
be smoothened by convolutirflfg, ») with a Gaussian resolution function, as shown in the
inset; but this also masks the sharp nature of the spin-wave peak. No central peaks are visible
in $%*(¢q, w) for T < Tkr, and, in contrast t6** (¢, w), there is a clear, but weak, spin-wave
peak at all temperatures, even ab@yg . Below the transition, the intensity of the spin-wave
peak depends strongly on lattice size, whereas its position is constani. £00.725, the
spin-wave peak i8** (¢, w) appears to gain intensity slightly Asincreases, whereas neither
the central peak nor the spin-wave peakSif(g, w) show any finite size effects. At higher
temperature there is no visible lattice size dependence in ethiéf, w) or 5% (g, ).

The position of the spin-wave peak is the same $6f(¢, w) and S%(¢, w) and is
proportional to momentum for smajl. As ¢ increases, the peak broadens, and becomes
less intense, yet it remains quite well defined. Forzheomponent, both the total intensity
and the relative loss of intensity with increasing momentum are much smaller. We conclude
thatS**(¢g, w) has the expected delta function form only for very small

Well aboveT,, atT = 0.8, $**(¢q, w) has no noticeable spin-wave peak at smadnd the
strong central peak rapidly loses intensity with increagintn marked contrast, the behaviour
of $%*(¢, w) maintains a clear but broadened spin-wave peak although there is also non-zero
intensity at smally in (g, w). Surprisingly, even at this temperature spin waves appear in
S$** (g, w) for very large momenta so that both a central peak and a spin-wave peak are present.
Note that the scale in figure 4(b) is about 100 times smaller than in figure 4(a). Figure 5 shows
the positiorw,, of the spin-wave peak as a function of momentum. The expected linear portion
of the dispersion curve extends to rather large momenta. With increasing temperature, the
spin-wave phase velocity,/q, which is proportional to the spin-wave stiffness, decreases
slowly and approximately linearly, as shown in the inset, and theoretically expected for small
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Figure 4. Spin dynamics data for the 2DY model. NoteTxr = 0.700(5). L = 128 and, = 2
in all cases: (a) transverse component; (b) longitudinal component; the inset showgdat®,
smoothed with a resolution function. (From Evertz and Landau 1996.)

T (Nelson and Kosterlitz 1977). Abov& r we can only plot the position of the residual peak
in $% (¢, w); thexx component has dropped sharply to zero.

Below Txr the data forS**(¢, w) show additional very small peaks with intensities
typically 102 of that of the spin-wave peaks. No such structure can be fouss& g, ).
At each temperature the locations of the small peaks are essentially unchangdd faith
fixed n, = gL/(2r). One simple explanation which is consistent with the data, but for
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Figure 5. Spin dynamics results for the frequeneoy* for the 2D XY model: spin wave against
momentum, for. = 192. Note that a" = 0.8 only $§%*(¢, ) has a spin-wave peak. The inset

shows the temperature dependence of the spin-wave velagjtyq. (From Evertz and Landau
1996).
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Figure 6. Spin dynamics data for the ‘fine structure’ ¥t* (¢, w) for the 2D XY model for
T =06, L =192,n, = 3; vertical arrows show the expected location of two-spin-wave peaks.
The single-spin-wave peak volume is about 300. (From Evertz and Landau 1996.)

which we have no rigorous theory, is two-spin-wave effed§gg, ») should show a single
spin-wave peak at a characteristic frequeagyplus additional sum and difference peaks
due to two-spin-wave processes involving total momenfunthe resultant positions of the
excitations involving the most likely (i.e. smallest individgyavalue) excitations for the case
of n, = 3 andT = 0.6 are marked in figure 6 and identified by the coordinates of the



Magnetic model system spin dynamics simulations R199

first vector in reciprocal space; the sum of the two spin-wave momenta mustgeguad
(2m/L). The locations of the resultant excitations agree extremely well with the positions of
the small peaks if (¢, w), but there is no way of comparing intensities. Interpolating the
intensities for odd values af, (which do not show peaks at = 0) to obtain estimates for
evenn,, we conclude that there is extra intensitysat= 0 which isnot attributable to two spin
waves.

The characteristic frequeney,, of the whole spectrum aof (q, w) is defined by (4.16).
When there is only a single spin-wave peak, thgncoincides with the spin-wave frequency
w,, .9.forT = 0.4. Closer to the transition, intensity betwees= 0 andw,, grows; therefore
the characteristic frequeneay;’ < w,. The dynamic exponentcan be extracted by analysing
wn, Or by looking atS (g, w) itself. Infigure 7 we show* L* as afunctionof L, forT < Txr
usingz = 1.0. The data show good scaling behaviour for both temperatures. The asymptotic
behaviour for largd. is strictly linear,w,,L* ~ gL, i.e. forz = 1, w,, ~ ¢g. For each finite
lattice size the dispersion curve flattens wlydmecomes large. Therefore Adncreases, the

L=192
(a) L=128
300 | T_O 4 1.=96 i
¥4
o, L 2=1.00
L=64
200 1
100 1
0 i 1 1 1
0 50 100 150 200 250
qL
250 | (b) L=128 4
Z
L=96
o,L T=0.7
200 F 1
Z=1.00 L=64
150 | i
100 4
50 + 1
O 1 1 1 1
0 50 100 150 200 250
qL

Figure 7. Finite size scaling of the characteristic frequency for the2bmodel determined from
spin dynamics simulationsg;;,” L. is plotted agains L. (From Evertz and Landau 1996.)
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data start to move away from the asymptotic behaviour at progressively larger valyes of
For different values of the data do not fall onto a common line even at the smallest momenta.
Remarkably, the scaling curves tof* atallT < Tk are similar, with variation only in their
slope. In contrast to this, we do not observe similar scaling behavieuf'iat7 > T..

Forq # 0, ¥’ has the same scaling behaviour as the in-plane component. -AD.4
the data are indistinguishable, but as intensity below the spin-wave peak grows athjgher
the scaling curve fow?* develops a larger slope thasj*. Interestingly, a” = 0.8, above
the transition, not only are there spin-wave peaks in presefitig, »), butw? also shows
‘effective’ scaling behaviour as below the transition, w4tk 1.0.

0.0 05 1.0 15 20
w/cq

Figure 8. Finite size scaling of spin dynamics results for the transverse dynamic structure factor
§** for the 2D XY model; wS(q, w)/S(q) is shown versusL?, with constant:,. The curves
correspond to different lattice sizes. (From Evertz and Landau 1996.)

If dynamic finite size scaling holds, then the scaled dynamic structure factor should fall
onto a single curve for sufficiently large lattices. Figure 8 shows a scaling pl§tfoyg, w);
forall T < Txr the data do indeed fall onto a single curve, whea 1.00. Only data from
very smallL (not shown here) deviate systematically. Note that scalingadthimplies that
at fixedg L the spin-wave peak for largeis very narrow. Its width is therefore very sensitive
to t,,4» iN the spin dynamics integration, thus necessitating very long time integrations. The
scaling behaviour is very sensitive to variationg ileading to errors bars which are less than
3%. Note that is the same across a range of temperature for which the static exporseigs
strongly, fromn = 0.082(1) atT = 0.4ton = 0.247(6) atT = 0.700. S%(g, w) is extremely
narrow atl’ = 0.4 andT = 0.6, and cannot show scaling given the, used, butal’ = 0.700
the spin-wave peak iny( ) has broadened and scaling is verified. Figure 9 compares the
results with theoretical predictions for the shap&f, ). Neither the prediction by Nelson
and Fisher (1977) nor by Moussa and Villain (1976) describe the data well. Both predicted
lineshapes exhibit a much narrower and higher spin-wave peak than the data, even when we
take into account the widening of the data due to the finite time cutoff, and neither show a
central peak. The prediction by Moussa and Villain also decays too slowly at high frequencies.
Inelastic neutron scattering data for Ce@I1C show the development of both a spin-wave peak
and a broad central peak. Neutron scattering data (Hutcleingls1986) for RBCrCl, have
too much scatter to allow any quantitative comparison, although they have been interpreted
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Figure 9. (a) Comparison of the spin dynamics lineshape for theX2Xbmodel,$** (¢, w), with

theoretical predictions, & = Tx7, L = 128 andy = 7/32. Thin curves represent predictions
by Nelson and Fisher and by Villain (with= 0.25 and with a suitably adjusted prefactor). (From

Evertz and Landau 1996.)) Inelastic neutron scattering results for Ce@IC (from Wiesler

et al 1994).
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in terms of both spin-wave and central peaks. Magnetic scattering data (Regireldl®©83)
for BaNix(POy)2 show a very pronounced central peak and a spin-wave peak, both primarily
transverse in character.

The central peak has been ascribed to diffusion of vortices. This interpretation was
called into question by Costt al (1997) who studied both vortex motion as well as vortex
creation/annihilation as a function of time. They find little vortex motion except at high
temperatures; instead the vortices are rather quickly annihilated and recreated elsewhere.

5.3. Three-dimensional critical dynamics of the Heisenberg model

5.3.1. Isotropic systems.Spin motions in the classical,= 3 Heisenberg ferromagnet were
studied almost three decades ago (Watsbal 1969), but the limited resolution possible at
that time made quantitative analysis impossiblg,(was limited to less than 20'). More
recent simulations have shown that it is now possible to probe the critical regime. We remind
the reader that dynamic scaling suggests that d — 8/v for class J, and various theories
(Hohenberg and Halperin 1977, Wagner 1970, Freedman and Mazenko 1976, @tedoli
1994) predictthat = d /2 for class G. Both systems have now been studied with spin dynamics
methods usind. x L x L body-centred-cubic systems with periodic boundary conditions. The
critical point is known accurately (Cheat al 1993),7, = 2.054 241 / k.

Spin dynamics simulations for the ferromagnet were carried out fo<16 < 40. A
fully vectorized, checkerboard hybrid algorithm (Landau 1992) was used to reduce critical
slowing down and a vectorized fourth-order predictor—corrector method was used to perform
the integration. A Cartesian coordinate system in spin space was chosen suchztlaists
was in the same direction as the magnetization of the spin configuratiom, ang 120/J
with a time step @W1/J. ForT = T, with L = 40, a variation only in the fifth digit of the
total energy and in the sixth digit of the length of individual spins was observed.

At T. the magnetization survives because of finite size effects, and the transverse
component and its longitudinal counterpart still behave slightly differently. Due to statistical
fluctuations, finite size effects i§Xg, w) are not easily observable; however, systematic shifts
in the peak position and in the magnitude of the wings of the transverse component can be
seen. For the longitudinal part we can also observe a systematic change in the intensity at
o = 0. Itturns out, as we will see later, that a better way to look into the finite size behaviour
is to draw a scaling plot according to (4.19) by fixing the valueglofinds,, L*. Because the
behaviour of the transverse neutron scattering functip(y, ») in the critical region is not
complicated by the residual magnetization a%ﬁieq, w), itis best suited for closer study. The
temperature dependence of the spin-wave frequency, read directly from the peak position, in
the vicinity of the critical point can be easily measured for different lattice sizes. Systematic
rounding appears whed — 7/ T,) < 0.03. This is clearly due to finite size effects, because
this temperature range is so closdtdhat the correlation length becomes limited by the linear
dimension of the system. On the other hand, finite size effects seem to be negligible for the
system withL = 40 further away fronT.. If finite size effects are negligible and thevalue is
small and fixed, both mode-coupling theory and hydrodynamic theory (Wagner 1970, Cuccoli
et al 1989) predict that the spin-wave frequency should varylas T/7,)"-#. Fits to data
with L = 40 and(1 — T/T,) > 0.03 forn, = 2, 3 yield two estimates whose mean value
gives(v — 8) = 0.316(21). Direct measurements give — 8) = 0.340965) so, within their
respective error bars, results from static and dynamic properties are in good agreement. The
dynamic critical exponent can be extracted from,, by the iteration scheme described in
the previous section. When appliedzatfor n, = 2, using two different initial values of?,
the two iterations converge to= 2.498. A similar analysis for, = 3 was made, and in
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figure 10 the size dependence@yf is plotted on a logarithmic scale. When not shown, the
estimated error bars for individual points are smaller than the size of the points. Within their
respective error bars, the two estimatesf@gree and yield an average pf= 2.478(28).
Experimentally; was estimated to be20+ 0.07 from inelastic neutron scattering data for
EuO (Boni and Shirane 1986,@i et al 1987); this value is consistent with the spin dynamics
estimate but with a larger uncertainty.

1.00 ¢

0.02

10

(CY

Figure 10. Determination of the dynamic critical exponenta) Finite size dependence of the
median frequency obtained from spin dynamics dat& {gr ) for the body-centred-cubic classical
Heisenberg ferromagnet. The inset shows the result of the iterative analysieutron scattering
data for the half-width for EuS @i et al 1987).

The dynamic finite size scaling behaviour$)f(q, ») is plotted in figure 11 for, = 2
with z = 2.478. The estimated error bars for individual data points are shown unless they are
smaller than the size of the symbols. Within their respective error bars, data points collapse
onto the same curve, thus supporting the estimate.féith values ofv and 8 which were
obtained from a high-resolution Monte Carlo study of static critical behaviour the dynamic
scaling law (Hohenberg and Halperin 1927 2 + (v — B) /v predicts; = 2.483%72). The
dynamic resul{v — B) = 0.316(21), together with static result far, yieldsz = 2.448(32).
Within their respective error bars, these two estimates are consistent and agree well with
the valuez = 2.478(28) from dynamic scaling. The range of validity of dynamic scaling
was found to be limited, i.e. fay > 0.5/7, e.g.n = 4 for L = 16, the data are outside
the scaling (figure 11) regime. For comparison we note that a (Metropolis) Monte Carlo
study of this model (Peczak and Landau 1993) yielded 1.96 for relaxational critical
behaviour.

Spin dynamics simulations at high temperatures for an fcc Heisenberg ferromagnet
(Chaudhury and Shastry 1988) found good agreement with neutron scattering data on EuO
(Boni and Shirane 1986) and with the predictions of Young and Shastry (1982). They did not
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Figure 10. (Continued)

find the two-peak structure predicted by Lindgard (1983) near the zone boundary. Closer to
T. dipolar effects become a consideration (Lovesey and Williams 1986, Balecali987),
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Figure 11. Dynamic finite size scaling of the transverse componestgf ») for bcc Heisenberg
magnets. &) the ferromagnet witm, = 2 andz = 2.478 (Chen and Landau 1994))(the
antiferromagnet witly, = 2 andz = 1.48 (Bunkeret al 1996).

but no spin dynamics simulations have yet been performed with dipolar couplings.

Many of the qualitative features of the data obtained by spin dynamics for the
antiferromagnet (Bunkeet al 1996) were similar to those for the ferromagnet. Data are
compared with experiment in figure 12. Beldwthe spin-wave peak becomes narrower and
increases in frequency, as expected, and it approaches linear spin-wave theory aPleak
widths even forT = 1.0J are wide enough that the contribution due to the finite resolution
is negligible. The longitudinal and transverse spin waves are at the same frequency; however
the spin wave peak is much less intense in the longitudinal component than in the transverse
component. This is to be expected since according to linear spin-wave theory longitudinal
excitations vanish ag — 0.

At T, the longitudinal component is similar in form to that of the Heisenberg ferromagnet
with both a central peak and a spin-wave peak. Asisthe cagefof, there isa much stronger
central diffusion peak in the longitudinal component than in the transverse component. The



R206 D P Landau and M Krech

0.75 K‘ “
Slow) [t
A I e
050 F . g = 57716
Nt =T
A C
4
A
0.25 %"‘4.
0.00 ' 4
O 2 0 4
(@
27
I
L = 32
S<q’w>' a = &7v/16
B T =T,
'
‘%‘M
\‘u&‘,‘ m‘,‘h‘
i,
A@u
) 1’\&"‘“-—5
o) 2 ‘0 4

(b)

Figure 12. Spin dynamics data fa¥(q, ) for the bcc Heisenberg antiferromagnet) {ransverse
component; i§) longitudinal component (Bunket al 1996). €) Inelastic neutron scattering data
for RbMnR; (Tucciaroneet al 1971).

spin-wave peak of the longitudinal component is also weaker than in the transverse component.
Wheng increases the overall intensity goes down and the spin-wave peak frequency increases
and the peak broadens. While over mgstalues the relative intensities of the central and
spin-wave peaks remain constant, at very smathe relative intensity of the central peak
decreases. Finite size effects extend to lafgdor the central peak than for the spin-wave
component, but no finite size effect is noticeablefoResults forS; (¢, w) are in qualitative
agreement with the experimental results (Tucciaretred 1971, Coxet al 1989, Coldeat al
1998) in that there is both a central peak as well as a spin-wave peak, but there appear to
be pronounced quantitative differences between the two sets of neutron scattering data. The
newer results (Cort al 1989, Coldeat al 1998), taken just belowWy, show a much weaker
central peak of clearly longitudinal nature. In contrast, as shown in figure 13, mode coupling
theory (Cuccoliet al 1994) does not predict a central pealat

As expected the dispersion curve looks quite different for the antiferromagnet and the
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ferromagnet. (For smal} the spin-wave peak was completely hidden by the central peak.)
The dispersion curve values we were able to obtain, however, show the decreased frequency
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Figure 13. Dynamic structure factor & = 7, as predicted from mode—mode coupling theory
for the isotropic Heisenberg antiferromagnet (AF). (a) Near the Brillouin centre; (b) near the AF-
ordering wave vectap = (1, 1, 1). The wave vectors in units of(/12a0) are: 1, (0,0,1); 2, (0,1,1);
3,(1,1,1); 4, (11,12,12); 5, (11,11,12) and 6, (11,11,11). (Cuet@li1994.)

as predicted by renormalization group theory (Freedman and Mazenko 1976).

In order to test the dynamic scaling theaesy (¢ L) was determined froniLL(q, w) with
fixed values of; L for all lattice sizes. The integration times used for the antiferromagnet were
long enough that the use of a resolution function was unnecessary @add be extracted
directly without using the iterative procedure described earlier for the ferromagnet. If data
for all L are used to determine from the slope of the log—log plots @, againstL, a
value of approximately = 1.4 is obtained; however using only the three largest lattices one
findsz = 1.48(4). Clearly corrections to the asymptotic finite size effects are subtle and
important. The estimate aof= 1.48(4) agrees well with the experimental results (Tucciarone
et al 1971, Coldeeet al 1998) and with dynamic scaling theory. The scalingSef(g, »)
itself was tested, and a finite size scaling plot with= 1.48 is shown in figure 11; the
data fall upon a single curve, to within the error bars, butfoe= 16 there are systematic
deviations.

5.3.2. Anisotropic systems.The effect of uniaxial anisotropy in magnetic systems has been
the subject of experimental and theoretical work (Als-Nielsen 1976). As for the isotropic case,
where a physical system (RbMg)Fexisted which was well described by this model, there are
good physical realizations for anisotropic models: M(Helleretal1971) and Fef(Schulhof
etal1971a, Hutchingst al 1972) which are well described by this model with weak and strong
single-site uniaxial anisotropy respectively. The degree of anisotropy can be found from the
ratio of the spin-wave peak energy at the zone centre to that at the zone boundary, and has been
found to be 0.17 for Mnfand 0.66 for Fef. Theoretical studies of the effect of single-site
anisotropy on the classical three-dimensional Heisenberg system (Lovesey and Balcar 1995)
predict that the dynamic structure factor will display a strong diffusive longitudinal component
and a suppressed propagative transverse compasiefat, ») should be non-critical in nature,
tending to a constant value in the ligit— 0, andSQ (g, ) should be critical with a predicted
dynamic critical exponend ~ 2; the renormalization group predicts~ 2.19 (Hohenberg
and Halperin 1977).

Simulations were performed (Landati al 1998) with anisotropies appropriate to each
system so that both statics and dynamics could be compared with existing theory and
experiment. Inthe limitoff — 0 three quantities may be measured by experiment, theory and
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simulation, i.e. the halfwidth of the dynamic structure factor when fitted to a central Lorentzian,
the relaxation rate and the value of the characteristic frequency, respectively. If the component
of S(g, w) being measured is non-critical then all three of these will converge to a constant
value agg — 0. If it is critical then all three of these will approach a power decay, with the
rate given byz, the dynamic critical exponentl. x L x L body-centred-cubic lattices with
periodic boundary conditions were simulated forQQ. < 46. Hybrid Monte Carlo methods

were used to generate initial states, and the critical temperatures were accurately determined:
for D = 1.324 (Fek), J/kT. = 0.439; and forD = 0.0591 (MnFk), J/kT. = 0.478. The

spin dynamics techniques discussed earlier were then used to study the dynamic behaviour.
For the highly anisotropic system this correlation time was very large, and the spin dynamics
simulation then consumed enormous computer resources due to the large number of MC steps
needed to produce new equilibrium configurations.
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Figure 14. Dynamic structure factor for an anisotropic Heisenberg antiferromagagtsp{n
dynamics data dfy; (b) neutron scattering data for FeFHutchingset al 1972).
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Figure 14. (Continued)

The low temperature data showed quite pronounced spin-wave peaks, the locations of
which provided good estimates for the dispersion relations. The predictions of linear spin-
wave theory T = 0) agree well, although even at this low temperature there is a very slight
energy renormalization, particularly for large

Initial results from the spin dynamics &t for the large anisotropy case indicated that the
longitudinal component of' (g, t) had a much longer relaxation time than in the isotropic
case, so the study of the layvbehaviour was intractable (it would requitg,, > 1000/J).

The data, see figure 14, reveal only a central pea$<'L"(ny, w) indicating purely dissipative
behaviour. A comparison of the data fsﬁ(q, w) with those fOI’Si‘(q, ) show that the
longitudinal component is much more intense, in agreement with both existing theory and
experiment results. The transverse component has a short relaxation tfpézse) could

be measured over the full rangegfalues using a very shayt,. = 8/J. (Such a small value

was chosen because of the large quantity of computer time required by the MC part of the
spin dynamics simulation of the highly anisotropic case.) Fo2D < 46 the characteristic
frequency for the transverse component approaches a constant value with incieasing

the limit of smallg, indicating non-critical behaviour. The shapeSf(g, ) shows a spin-
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wave peak, with the possible addition of a small central peak. These findings are in general

agreement with theory and experiment. Neutron scattering data for the transverse component

for FeF, (Hutchingset al 1972) show only a central peak at théé temperature and yield

a value ofz = 2.1+ 0.2. With such large error bars this estimate cannot decide between

competing theoretical predictions. Note that- 2.04 for (Metropolis) critical relaxation in

the anisotropic limit, the 3D Ising model (Wansleben and Landau 1991, Kikuchi and Ito 1993).
Preliminary spin dynamics simulation results for the case of weak anisotropyjidnéw

purely dissipative behaviour only at logvvalues of the longitudinal component 8tg, ).

This indicates crossover to isotropic behaviour due to the weak nature of the anisotropy. The

transverse component shows stronger propagative excitations than in the case of stronger

anisotropy. This is to be expected since the transverse excitations in the isotropic case are

much stronger than those of the strongly anisotropic case. Although not yet complete, these

simulational data already show the resolution needed to extract useful information from the

dynamic structure factor. With anisotropy present the longitudinal component of the dynamic

structure is purely dissipative and the transverse component is non-critical with a weakened

spin wave peak. Neutron scattering data for the transverse component for(Blctiulhof

et al 1971b) shows non-critical behaviour By. The longitudinal relaxation rate suggests

thatz = 3/2, consistent with an isotropic system instead of that predicted for an anisotropic

model, although the authors express concern that they cannot really access tlgeregiale

and may still be outside the asymptotic critical regime. If this is true, it means that there are

not yet sufficiently accurate results from either simulation or experiment to test theoretical

predictions.

6. Summary and conclusions

Spin dynamics simulations have now become a mature method for probing the time dependent
behaviour of magnetic systems. The combination of sophisticated Monte Carlo methods to
generate initial states and of high power time integration techniques makes it possible to
study larger systems to much longer times than ever before. Indeed, in some cases the spin
dynamics data exceed the resolution of real experiments. The picture which is emerging is one
in which the general features, including dynamic critical exponents, are correctly predicted
by theory. Line shapes and intensities, however, are generally predicted poorly by theory. In
some cases there are good experimental data for testing dynamic critical behaviour, but for
the most part lineshapes are still known with only modest accuracy. Other challenges remain
to be addressed by spin dynamics. For example, there are theoretical predictions for the
dynamics near multicritical points (Dohm 1983, Huber 1982) which remain to be tested. The
newly developed approach of higher order decomposition time integration methods promises
to extend the utility of the method still further.
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